DEFENDING, ACCORDING TO COMPLEXITY THEORY, DIALOGUES BETWEEN ARGUING AND DEMONSTRATING
OPENING SPACES FOR THE REPERCUSSIONS OF SUCH DIALOGUES IN THE IDENTIFICATION OF MATHEMATICIANS AND MATHEMATICS TEACHERS
DOI:
https://doi.org/10.33871/rpem.2024.13.31.8970Abstract
The investigation described in the following pages is theoretical in nature. It turns to the possibility of transformations in the identities of the mathematicians and the mathematics teachers. Mathematicians and mathematics teachers (of the school and of the university) differentiate between arguing and demonstrating, linking argumentation more to elementary or school mathematics, and demonstration more to scientific or academic mathematics. However, arguing and demonstrating are not restricted, in terms of their characteristics, to distinct processes. Argumentation and demonstration are contrasting, yes, and even opposites; however, making use of a non-Aristotelian logic, it can be said that, in addition to opposing each other, argumentation and demonstration complement each other: this is the dialogical complex principle. Two other complex principles that are also used in this dissertation, to deal with argumentation and demonstration, are the recursive and the hologrammatic. It is believed that epistemic discussions, in the sense recommended here, involving teachers and students, in the school and university contexts, contribute to changing the conception about the roles that the argumentation and the demonstration play in the mathematical dynamics, stimulating changes in the identities of the mathematicians and the teachers mathematics (elementary and academic).
Downloads
References
BECCHERE, M.; GRUGNETTI, L.; PUXEDDU, S.; USELLI, E. Argomentare e dimostrare... una problematica “interdisciplinare”. In: GRUGNETTI, L.; IADEROSA, R.; REGGIANI, M. (Eds.). 1996, p. 51-61.
BOTELHO, J. F. A odisseia da filosofia: uma breve história do pensamento ocidental. São Paulo: Maquinaria Sankto Editora e Distribuidora Ltda, 2021.
D’AMORE, B. Elementos de didática da matemática. Tradução de Maria Cristina Bonomi. São Paulo: Livraria da Física, 2007.
DUBAR, C. A socialização: construção das identidades sociais e profissionais. São Paulo: Martins Fontes, 2005.
DUVAL, R. Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels. 1995. Berna: Peter Lang. Trad. esp.: Sémiosis y pensamiento humano. Régistros semióticos y aprendizajes intelectuales. Cali: Universidad del Valle. 1999.
MARCHINI, C. Argomentazione e dimostrazione. L’insegnamento della matematica e delle scienze integrate. 10, 2, p. 121-140, 1987.
MORIN, E. O método 3: o conhecimento do conhecimento. 2. ed. Porto Alegre: Sulina, 1999.
MORIN, E. Ciência com consciência. 5. ed. Rio de Janeiro: Bertrand Brasil, 2001.
MORIN, E. O método 4: as ideias. 3. ed. Porto Alegre: Sulina, 2002.
PERELMAN, C. Argomentazione, Verpete da Enciclopedia Einaudi. Torino: Einaudi, 1977.
SILVA, G. H. G. da; MOURA, A. Q. Uma aproximação entre o falibilismo de Lakatos e o trabalho com investigações matemáticas em sala de aula: possíveis aproximações. Acta Scientiae: Revista de Ensino de Ciências e Matemática. v. 17, n. 2, mai./ago. 2015, p. 277-293.
SPINOZA, B. Ética. Tradução de Tomaz Tadeu. São Paulo: Autêntica, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Paranaense de Educação Matemática
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.