Temporal Success Analyses in Music Collaboration Networks: Brazilian and Global Scenarios
Visualizações: 107DOI:
https://doi.org/10.33871/23179937.2023.11.2.7185Palavras-chave:
Sucesso musical, Perfis de Colaboração, Análise de Redes SociaisResumo
Collaboration is a part of the music industry and has increased over recent decades; but little do we know about its effects on success and evolution. Our goal is to analyze how success has evolved over collaboration networks and compare its global scenario to a local, thriving one: the Brazilian music industry. Specifically, we build collaboration networks from data collected from Spotify's Global and Brazilian daily charts, analyze them and identify collaboration profiles in such networks. Analyses over their topological characteristics reveal collaboration patterns mapped into four different profiles: Standard, Niche, Ephemeral and Absent, where the two first have a higher level of success. Furthermore, we do deeper by evaluating the temporal evolution of such profiles through case studies: pop and k-pop globally, and pop and forró in Brazil. Overall, our findings emphasize the importance of collaboration profiles in assessing success, and show differences between the global and Brazilian scenarios.
Downloads
Referências
ABEL, Fabian; DIAZ-AVILES, Ernesto; HENZE, Nicola; KRAUSE, Daniel; SIEHNDEL, Patrick. Analyzing the Blogosphere for Predicting the Success of Music and Movie Products. In: Proceedings of International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Odense, Denmark, 2010. Doi: 10.1109/ASONAM.2010.50 pp. 276–280. DOI: https://doi.org/10.1109/ASONAM.2010.50
ARAUJO, Carlos S.; NETO, Rayol M.; NAKAMURA, Fabiola G.; NAKAMURA, Eduardo F.. Predicting Music Success Based on Users’ Comments on Online Social Networks. In: Proceedings of Brazilian Symposium on Multimedia and the Web (WebMedia). Gramado, Brazil, 2017. Doi: 10.1145/3126858.3126885 pp. 149–156. DOI: https://doi.org/10.1145/3126858.3126885
BEZDEK, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, 1981. ISBN 978-1-4757-0452-5 DOI: https://doi.org/10.1007/978-1-4757-0450-1_1
CALEFATO, Fabio; IAFFALDANO, Giuseppe; LANUBILE, Filippo. Collaboration Success Factors in an Online Music Community. In: ACM GROUP. Sanibel Island, USA, 2018. Doi: 10.1145/3148330.3148346 pp. 61–70. DOI: https://doi.org/10.1145/3148330.3148346
CATTEL, Raymond B. The scree test for the number of factors. Multivariate Behavioral Research. Vol. 1, no. 2, pp. 245–276, 1966. DOI: https://doi.org/10.1207/s15327906mbr0102_10
COSIMATO, Alberto; PRISCO, Roberto; GUARINO, Afonso; MALANDRINO, Delfina; LETTIERI, Nicola; SORRENTINO, Giuseppe; ZACCAGNINO, Rocco. The Conundrum of Success in Music: Playing it or Talking About it? IEEE Access. Vol. 7, pp. 123 289–123 298, 2019. Doi: 10.1109/ACCESS.2019.2937743 DOI: https://doi.org/10.1109/ACCESS.2019.2937743
COSTELLO, Anna B.; OSBORNE, Jason. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical assessment, research, and evaluation. Vol. 10, no. 1, p. 7, 2005.
GIENAPP, Lukas; KRUCKENBERG, Clara; BURGHARDT, Manuel. Topological properties of music collaboration networks: The case of Jazz and Hip Hop. Digital Humanities Quarterly. Vol. 15, no. 1, 2021. [Online]. Available: http://www.digitalhumanities.org/dhq/vol/15/1/000504/000504.html
GRANOVETTER, Mark S. The Strength of Weak Ties. American Journal of Sociology. Vol. 78, n. 6, pp. 1360-1380, 1973. DOI: https://doi.org/10.1086/225469
HUMPREYS, Lloyd G.; MONTANELLI JR, Richard G. An investigation of the parallel analysis criterion for determining the number of common factors. Multivariate Behavioral Research. Vol. 10, no. 2, pp. 193–205, 1975. DOI: https://doi.org/10.1207/s15327906mbr1002_5
KIM, Seon Tae; OH, Joo Hee. Music intelligence: Granular data and prediction of top ten hit songs. Decision Support Systems. Vol. 145, p. 113535, 2021. Doi: 10.1016/j.dss.2021.113535 DOI: https://doi.org/10.1016/j.dss.2021.113535
LIMA, Raul A.; SOUZA, Rômulo C. C.; LOPES, Hélio; BARBOSA, Simone D. J. Brazilian Lyrics-Based Music Genre Classification Using a BLSTM Network. In: Proceedings of International Conference on Artificial Intelligence and Soft Computing (ICAISC). Vol. 12415, Zakopane, Poland, 2020. Doi: 10.1007/978-3-030-61401-0 49 pp. 525–534. DOI: https://doi.org/10.1007/978-3-030-61401-0_49
NEWMAN, Mark E. J. Networks: An Introduction. Oxford University Press, 2010. ISBN 978-0-19920665-0.
NOBRE, Gabriel P.; FERREIRA, Carlos H. G.; ALMEIDA, Jussara M. A hierarchical network-oriented analysis of user participation in misinformation spread on WhatsApp. Information Processing & Management. Vol. 59, no. 1, p. 102757, 2022. Doi: 10.1016/j.ipm.2021.102757 DOI: https://doi.org/10.1016/j.ipm.2021.102757
OLIVEIRA, Gabriel P.; SILVA, Mariana O.; SEUFITELLI, Danilo B.; LACERDA, Anisio; MORO, Mirella M. Detecting collaboration profiles in success-based music genre networks. In: Proceedings of Int'l Society for Music Information Retrieval Conference (ISMIR), 21, 2020, Montreal, Canada. p. 726-732.
PADRON, Marcos F.; CRUZ, Fernando W.; SILVA, Juliana R. Towards a Conceptual Model for Brazilian Popular Music Representation. In: Proceedings of Seminário de Pesquisa em Ontologias no Brasil (ONTOBRAS). São Paulo, Brazil, 2018, pp. 263–268. [Online]. Available: http://ceur-ws.org/Vol-2228/short8.pdf
PADRON, Marcos F.; CRUZ, Fernando W.; SILVA, Juliana R. Extending the IFLA Library Reference Model for a Brazilian popular music digital library. International Journal on Digital Libraries. Vol. 21, no. 3, pp. 289–306, 2020. Doi: 10.1007/s00799-020-00277-5 DOI: https://doi.org/10.1007/s00799-020-00277-5
PICHL, Martin; ZANGERLE, Eva; SPETCH, Gunther; SCHEDL, Markus. Mining Culture-Specific Music Listening Behavior from Social Media Data. In: Proceedings of IEEE International Symposium on Multimedia (ISM). Taichung, Taiwan, 2017. Doi: 10.1109/ISM.2017.35 pp. 208–215. DOI: https://doi.org/10.1109/ISM.2017.35
SCHEDL, Markus; FERWERDA, Bruce. Large-Scale Analysis of Group-Specific Music Genre Taste from Collaborative Tags. Proceedings of IEEE International Symposium on Multimedia (ISM). Taichung, Taiwan, 2017a. Doi: 10.1109/ISM.2017.95 pp. 479–482. DOI: https://doi.org/10.1109/ISM.2017.95
SCHEDL, Markus; LEMMERICH, Florian; FERWERDA, Bruce; SKOWRON, Marcin; KNEES, Peter. Indicators of Country Similarity in Terms of Music Taste, Cultural, and Socio-economic Factors. In: Proceedings of IEEE International Symposium on Multimedia (ISM). Taichung, Taiwan, 2017b. Doi: 10.1109/ISM.2017.55 pp. 308–311. DOI: https://doi.org/10.1109/ISM.2017.55
SEUFITELLI, Danilo B.; OLIVEIRA, Gabriel P.; SILVA, Mariana O.; BARBOSA, Gabriel R. G.; MELO, Bruna C.; BOTELHO, Juliana E.; MELO-GOMES, Luiza de; MORO, Mirella M. From Compact Discs to Streaming. Revista Vórtex, Curitiba, v.10, n.1, p. 1-28, April, 2022. Doi: 10.33871/23179937.2022.10.1.2 DOI: https://doi.org/10.33871/23179937.2022.10.1.2
SILVA, Mariana O.; ROCHA, Laís M.; MORO, Mirella M. Collaboration profiles and their impact on musical success. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2019. p. 2070-2077. DOI: https://doi.org/10.1145/3297280.3297483
SILVEIRA, Bárbara; SILVA, Henrique S.; MURAI, Fabrício; SILVA, Ana Paula C. Predicting user emotional tone in mental disorder online communities. Future Generation Computer Systems. Vol. 125, pp. 641–651, 2021. Doi: 10.1016/j.future.2021.07.014 DOI: https://doi.org/10.1016/j.future.2021.07.014
UZZI, Brian; SPIRO, Jarret. Collaboration and Creativity: The Small World Problem. American Journal of Sociology, vol. 111, no. 2, pp. 447–504, 2005. Doi: 10.1086/432782 DOI: https://doi.org/10.1086/432782
VOTTER, Michael; MAYERL, Maximilian; SPETCH, Gunther; ZANGERLE, Eva. Novel Datasets for Evaluating Song Popularity Prediction Tasks. In: Proceedings of IEEE International Symposium on Multimedia (ISM). Naple, Italy, 2021. Doi: 10.1109/ISM52913.2021.00034 pp. 166–173. DOI: https://doi.org/10.1109/ISM52913.2021.00034
XU, Dongkuan; TIAN, Yingjie. A Comprehensive Survey of Clustering Algorithms. In: Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015. DOI: https://doi.org/10.1007/s40745-015-0040-1
ZANGERLE, Eva; HUBER, Ramona; VOTTER, Michael; YANG, Yi-Hsuan. Hit Song Prediction: Leveraging Low- and High-Level Audio Features. In: Proceedings of Int'l Society for Music Information Retrieval Conference (ISMIR), Delft, the Netherlands, 2019, pp. 319–326. [Online]. Available: http://archives.ismir.net/ismir2019/paper/000037.pdf
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Mirella M. Moro, Mariana O. Silva, Gabriel P. Oliveira, Danilo B. Seufitelli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.