Sound board's Frequency Response Analysis of Classical Guitars
Visualizações: 78DOI:
https://doi.org/10.33871/23179937.2023.11.2.7762Keywords:
Classical guitars, Fourier transform, Continuous wavelet transform, Signal processingAbstract
The instrument's sound quality assessment is an arduous task to be performed computationally. This work aims to compare high-quality sound characteristics among instruments. The impulse response of the guitar is recording in the time domain and, by means of the Fourier and Continuous Wavelet Transforms the characteristics among high-quality guitars, in the frequency domain, are shown. To discriminate high quality, through experimentation, the criteria are: 1) tuning of notes, sound projection and definition of notes; 2) sound balance at all frequencies and timbre. Comparison of the frequency response (intensity, density, shape, range) gives a good intuition regarding sound quality of the instruments that shares similar characteristics, according to the criteria defined. Note that, among the high-quality classical guitars, it is not possible to define what is better sound-wise due to the fact that high-quality instruments are hearing-perceptual defined, therefore, depends on the criteria of the musician.
Downloads
References
BRADLEY, Kevin; CHENG, Mu-Huo; STONICK, Virginia L. Automated analysis and computationally efficient synthesis of acoustic guitar strings and body. Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Acoustics, 1995, pp. 238-241, Doi: https://doi.org/10.1109/ASPAA.1995.482999 DOI: https://doi.org/10.1109/ASPAA.1995.482999
CAHAN, David. Hermann Von Helmholtz Cahan and the Foundations of Nineteenth-Century Science. [S.l.]: University of California Press, 1993. pp. 20.
COBBOLD, Richard S. C., MANBACHI, Amir. Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound – SAGE Journals, v. 19, n. Issue 4, 2011. pp. 23. DOI: https://doi.org/10.1258/ult.2011.011027
COOLEY, James W.; LEWIS, Peter A. W.; WELSCH, Peter D. Historical notes on the fast Fourier transform. (PDF). IEEE Transactions on Audio and Electroacoustic. 15 (2): 7679. Cite Seer X 10.1.1.467.7209. Doi: https://doi.org/10.1109/tau.1967.1161903 DOI: https://doi.org/10.1109/TAU.1967.1161903
DODGE, Charles.; JERSE, Thomaz.A. Computer music synthesis, composition, and performance. Charmer Books, ed. 2, New York, 1997.
ELBIR, Ahmet; ILHAN, Hamza Osman; SERBES, Gorkem; AYDIN, Nizamettin. Short Time Fourier Transform based music genre classification. Electric Electronics, Computer Science, Biomedical Engineering’s Meeting (EBBT), 2018, pp. 1-4, Doi: https://doi.org/10.1109/EBBT.2018.8391437 DOI: https://doi.org/10.1109/EBBT.2018.8391437
FLETCHER, Harvey.; MUNSON, William A. Loudness, its definition, measurement and calculation. Journal of the Acoustical Society of America 5, 82108, 1933. DOI: https://doi.org/10.1121/1.1915637
HAINES, David W. The essential mechanical properties of wood prepared for musical instruments. CAS Journal, Vol. 4, No. 2 (Series II), p. 2032, 2000. pp. 22.
HURD, David C. Left-brain lutherie. Ukuleles by Kawika, Inc., 2004. pp.22.
HUYNH, Du Q. Frequency estimation of musical signals using STFT and multitapers. Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, 2009, pp. 34-39, Doi: https://doi.org/10.1109/ISPA.2009.5297759, 2009. DOI: https://doi.org/10.1109/ISPA.2009.5297759
JANSSON, Erik V. Function, construction and quality of the guitar. Royal Swedish Academy of Music, n. 38, 1983. pp. 29, 31 and 32.
KULKARNI, Urja; KAUSHIK, Shrishti; LOBO, Lanita; SONKUSARE, Reena Comparative Study of Digital Signal Processing Techniques for Tuning an Acoustic Guitar. 7th International Conference on Smart Structures and Systems (ICSSS), 2020, pp. 1-5, Doi: https://doi.org/10.1109/ICSSS49621.2020.9202368 DOI: https://doi.org/10.1109/ICSSS49621.2020.9202368
LUCAS, Crisron R.; LEON, Franz de. A Finite-Element Simulation-based Prototyping for Classical Guitars using COMSOL Multiphysics. 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2019, pp. 115-120, Doi: https://doi.org/10.1109/ICCSCE47578.2019.9068585, 2019. DOI: https://doi.org/10.1109/ICCSCE47578.2019.9068585
___________________. Effects of changing material properties on vibration modes of guitar body. 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2017, pp. 139-143, Doi: https://doi.org/10.1109/ICCSCE.2017.8284394, 2017. DOI: https://doi.org/10.1109/ICCSCE.2017.8284394
MARKS, Robert J. Introduction to Shannon sampling and interpolation theory. Springer-Verlag, 1991. pp. 20. DOI: https://doi.org/10.1007/978-1-4613-9708-3
MEIER, Eric The Wood Database. 2007. Available Online. Site:<https://www.wood-database.com/>. Date: 11.11.2018. pp. 29.
OPPENHEIMER, Alan V.; SCHAFER, Ronald W. Discrete-Time Signal Processing, Prentice Hall Press, 3rd. ed., USA, 2009.
O’SULLIVAN, Elisabeth A.; WINFREY, William R.; COWAN, Colin F. N. Padé Fourier Methods for Music Transposition. 15th International Conference on Digital Signal Processing, 2007, pp. 543-546, Doi: https://doi.org/10.1109/ICDSP.2007.4288639 DOI: https://doi.org/10.1109/ICDSP.2007.4288639
ROMANILLOS, José L. Antonio De Torres: Guitar Maker-His Life and Work. [S.l.]: Bold Strummer Ltd, December 1, 1997. pp. 17.
SCHMIDT, Erik M.; MIGNECO, Raymond V.; SCOTT, Jeffrey J.; YOUNGMOO, Kim. Modeling musical instrument tones as dynamic textures. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2011, pp. 329-332, Doi: https://doi.org/10.1109/ASPAA.2011.6082326. 2011. DOI: https://doi.org/10.1109/ASPAA.2011.6082326
SONJA, Krstic.; DRAGAN, Drinčić; MIRKO, Milošević. Classical guitar with and without resonator: Comparative analysis of dynamic characteristics. 20th Telecommunications Forum (TELFOR), 2012, pp. 1268-1271, Doi: https://doi.org/10.1109/TELFOR.2012.6419447, 2012. DOI: https://doi.org/10.1109/TELFOR.2012.6419447
STANCIU, Mariana D.; VLASE, Sorin; MARIN, Marin. Vibration Analysis of a Guitar considered as a Symmetrical Mechanical System. Symmetry, Vol. 11, N. 6, A.N. 727, ISSN 2073-8994, Doi: https://doi.org/10.3390/sym11060727, 2019. DOI: https://doi.org/10.3390/sym11060727
STEIN, Elias M.; WEISS, Guido. Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). book, Princeton University Press, pp. i-vi. 1971, ISBN 9780691080789. DOI: https://doi.org/10.1515/9781400883899
TEIXEIRA, Paulo Sérgo.; SILVA, Alexandre José da; FEITEIRA, José Flávio. Avaliação e comparação de características de amortecimento de sinais gerados de diferentes violões. Caderno UniFOA, 2014. DOI: https://doi.org/10.47385/cadunifoa.v9i26.254
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Milton Ernesto Romero Romero, Rafael Pedrosa Salgado, Evandro Mazina Martins
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.