
	
	
Revista	Vórtex	|	Vortex	Music	Journal	|	ISSN	2317–9937	|	http://vortex.unespar.edu.br/	
D.O.I.:	https://doi.org/10.33871/23179937.2021.9.2.13	

Received	on	July	1st,	2021.	Approved	on:	November	1st,	2021.	Available	online	on:	30/11/2021.	Guest	Editor:	Dr.	Alexandre	Torres	
Porres.	Creative	Commons	CC-BY-NC.	
	

What Pd Can't Teach; What It Can
Joshua Hudelson

Lebanon

Abstract: Pure Data's long appeal is partly owed to its
visual layout and intuitive mode of use. This might lead
one to consider it a useful pedagogical tool, even if it now
meets stiff competition from glitzier and more user-
friendly applications. In the author's experience, however,
Pd's ambiguous location on the spectrum of virtualization
makes it bad for teaching but gives it a far more important
function for composers. In occupying an uncanny valley
between the digital-as-digital and the digital-as-analog, it
resists the general tendency of digital technology to
obscure awareness of itself, that is, of the digital computer
as the current high watermark of a longer history of
rationalization. It thus pushes composers of computer
music back towards the questions that are at the heart of
their work. This dynamic is illustrated by the author's
experience of developing and tinkering with a novel
technique of sound synthesis.

 Keywords: pedagogy, digital, analog, rationalization,
statistical feedback

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

2

n the fall of 2012, my classmate Joe and I crossed the street from the NYU Department of

Music to the Steinhardt School of Culture, Education, and Human Development, where I'd

arranged to give a presentation on Pure Data to a group of education scholars. We thought Pd

had great potential as a pedagogical tool, and we were curious to know if education scholars would

think the same. More than a signal processing platform, Pd struck us as a limpid, conceptual tool for

exploring everything from music to mathematics. The white sandbox of the patching window

seemed certain to appeal to students as an intuitively playful space—a bright, open space in which

making connections between different objects would lead to pleasure, creativity, and ultimately

understanding. Best of all, it was free.

The group at Steinhardt, while encouraging, was somewhat less enamored with Pd than we

were. They didn't buy the idea that its graphical layout was inherently easier to understand than

text. Why would a box with one outlet and two inlets—only one of which triggered anything to

compute—be any more intuitive than an old fashioned plus sign? They noted that there was

abundant research being done on the role of technology in pedagogy—had we looked at any of

that? They gave us a list of people, projects, and books to check out, all of which I promptly forgot

about, still thoroughly convinced of Pd's unique explanatory power.

Several years later, as a visiting professor at the American University of Beirut, I had the

opportunity to test my convictions. In a class titled "Digital Sound and Music," I showed my

students how concepts from music, psychoacoustics, and the physics of sound could be illustrated

with Pd's boxes and lines. What struck me as success in the early weeks of class, however, soon

turned out to be an illusion. Yes, my students liked Pd—but mainly because I liked it. I appeared to

them as an amusingly nerdy American who took nostalgic pleasure in a relatively drab and abstruse

piece of software from the 1990s. Beyond that, however, Pd did not strike them as a particularly

clarifying tool. Even my computer science majors struggled to rewire their minds for its

unbecoming, pixellated thickets. By the end of the semester, my students had done an admirable job

of learning Pd, ultimately performing a collaboratively-composed tribute to the Beirut soundscape

at a public concert. But they managed this in spite of the software, not because of it. I finally had to

grapple with the fact that Pd was not the pedagogical panacea I'd wanted it to be.

Of course, Pd was never meant to be that. As Miller Puckette has noted, it was not even

intended to be the open-source alter-ego to Max/MSP that is its reputation today. Originally, the

I

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

3

exciting graphical component of Pd was the now little-used “struct” object, with which composers

were meant to sonify two-dimensional shapes (PUCKETTE, 2020). The Max data-flow paradigm

was only added for the sake of functionality. By the time I was teaching in Beirut, Max/MSP's sleek

graphics made it nearly a different species of program. All of which raises the question of what I

thought was so great about Pd in the first place. What had it taught me that I thought was so

important to teach others? To answer this question, a short detour is necessary.

1. An Analog of the Digital

Before I'd ever heard of Pd, I was making bad electronic dance music on digital audio

workstations. I can still call to mind the bouncing motion made by the cables that linked different

pieces of virtual studio gear, as though they were really rubber-coated and beholden to the gravity

and Hookes's Law. The sensuous qualities of such workstations have only increased since then, with

ever more precise—which is to say, precisely imprecise—virtualizations of physical equipment

appearing on the market each year.

It's not uncommon to hear this tendency towards virtualization criticized from the position

of expertise. According to a certain type of personality (myself all too often included) the more

approachable and user-friendly the tool, the less serious the composer using it must be. A better

critique, however, turns an eye to the ideological underpinnings of virtualization. The apparent

physicality of a device not only makes it more approachable, it also lends it an aura that belies the

machinic processes actually at work. The three-dimensional space of the gear rack, the textured

surfaces of the gear, the inexactitude of its knobs, the springiness of the cables—all of these serve to

bolster the impression that whatever comes out of the speakers was not born on a Procrustean bed

of discrete computation. Instead, the sound must have its source in an open space of play and

possibility. This distinction is made all the more drastic by the fact that much of the gear that DAWs

virtualize was originally “analog”, connoting a similar warmth, humanity, and openness when set

against the digital.

According to Alexander Galloway, the analog in its broadest philosophical sense denotes

hybridity: the interaction of heterogeneous entities (GALLOWAY, 2014, p. 103). This is perhaps

most famously characterized by Gilles Deleuze's example of the orchid and the wasp, whose

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

4

interactions are not prescribed by a rigid evolutionary explanation so much as unfurled via an open-

ended co-becoming that is possible between entities (DELEUZE and GUATTARI, 2004, p. 11).

Analog electrical technology can be read along these lines. It produces errors (sometimes quite

fortuitous ones) rooted in the immanent heterogeneity of its physical components, and it is

susceptible to interference and interaction via a host of outside forces, from vagrant electromagnetic

waves to whatever object manages to plug into it.

Of course, the debates surrounding the digital and analog are too plentiful to rehash here, so

the reader will have to suffer with my personal and contextually narrow intervention. Having spent

time in a Masters program that was changing its name from “Electro-Acoustic Music” to "Digital

Musics" (yes, a plural abstract noun), I have long been interested in what, exactly defines the shift to

the digital. Like some, I would argue that there is no reliable split between the analog and the digital,

at least not when the scope is narrowed from Galloway's grand, ontological vision to the realm of

technological devices. A circuit that uses transistors and a circuit that does not are, within this view,

the same type of technology. But, unlike many who would agree with this point, I do not ground it

on the fact that both technologies are physically comparable (i.e., they both move electrons through

conductive materials). Rather, analog and digital technologies share in a historically contiguous and

conceptually overlapping advancement of the rationalization of material world for the purpose of

computation. The same epistemological decision precedes both: that the world be rendered, more

or less completely, in the form of measurements. And these measurements have some level of

tolerance, resolution, or margin of error. Indeed, the presence of some degree in analog technology

is not what distinguishes it from digital technology, where error gets decimated many orders of

magnitude. Instead, oddly, it is what links the two. The basic elements of analog circuits—resistors,

capacitors, inductors, and so on—were hardly designed to be capacious in their affordances or

fickle in their responses. Viewed without the tinted glasses of digital-era nostalgia, analog

technology was another step in a long history of winnowing the uncertainty of the material world,

getting rid of the very promiscuity that is now its claim to superiority. One might even argue that

the rise in popularity of stochastic processes, error, and interference in 20th century music—and

especially now, in the boutique market of vintage analog devices—occurs in direct proportion to

the threat that this process of rationalization poses to established ideas about composers, the act of

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

5

composition, and the supposedly open field of human creativity. Sources of randomness, in other

words, offers relief.

Returning to virtual representations of physical gear, we can now see that contemporary

DAWs attempt to leverage the perceived warmth of the analog in order to obfuscate the more

general thrust of computational technology.1 Pd, then, occupies a strange midpoint: an uncanny

valley between the digital-as-analog and the digital-as-digital. In failing to choose a side, it

illuminates something about the terrain on which composers of computer music find themselves

today. Of course, technically speaking, Pd is entirely digital. But its hybrid origins reveal themselves

at every turn. Among its objects, one finds a set of strictly digital, bitwise operations but also a

“voltage-controlled filter”, which references the realm of analog computing. The inlets and outlets

of the objects, too, hark to modular synthesis. And the digital/analog divide is strengthened further

by the distinction between thin "message" wires whose values are easy to interrogate and thick

“signal” wires whose contents are better concealed.2 The objects themselves, however, feel more

scriptural than material; the need to type out their names to instantiate them is a vestige of

command line programming. Further, the objects appear to have hidden interiors similar to devices

in the analog world. That Pd is based around patching is already, of course, a reference to the

patchbays of analog computers and synthesizers. And the open field of the patching window would

seem to offer the same aura of seemingly infinite possibilities as the patch-able DAW I described

above. And yet the space is also sterile and diagrammatic, suggesting a mode of thought more rigid

than intuitive. At times, the digital asserts itself against intuition—for example, when the right-to-

left processing of objects and inlets disrupts the at-all-once flow intended for a system.

In his reflections on Max, Puckette suggests that there are aspects of the patching layout that

are loaded in terms of Western musical cultural influence—namely, the focus on paper and writing

as essential features of music-making (PUCKETTE, 2002, p. 39). I would suggest, however, that

Pd's far more important ideological work lies in how it both conjures up and troubles the

rationalizing force of the digital. It returns us again and again to the fact that, as composers of

1It's important to note a similar obfuscation at the extreme opposite pole. The figure of the clear-eyed, or perhaps
genius, computer programmer performs a similarly Romantic role of “ghost in the machine” for the digital computer.
2This distinction can be traced back to Max Mathews 1963 paper outline the theory of the MUSIC-N language.
(MATHEWS, 1963, p. 555, figure 2).

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

6

computer music, we must either contend with the nature of the digital or persist in deceiving

ourselves about what our work is. In the following section, I will use an example from my

experience programming a Pd external to illustrate how this effect plays out in practice.

2. Feeding-back Statistical Feedback

I got the idea for the “statfeed~” object during a lecture by the composer Larry Polansky at

the Workshop in Algorithmic Computer Music (WACM) at UC Santa Cruz in 2014. Polansky was

speaking about “statistical feedback”, a heuristic for modulating the degree of randomness in a

sequence generated from some finite number of elements. It had been the go-to method for

stochastic choices in the works of James Tenney, who had been one of Polansky's teachers and close

friends.3 And Tenney, himself, had grounded it in the work of an earlier generation of American

composers of atonal music and their concept of “dissonant counterpoint” (Polansky, Barnett, and

Winter; 2002, p. 4). Charles Ames also worked on the heuristic, which he deemed “a plausible

emulation of how living composers dealt with balances before serialism was introduced” (AMES,

1995, p. 38).

What, exactly, is statistical feedback? At its simplest, it's a process by which a set of

probabilistic weights corresponding to a set of musical elements (notes, for example) is updated

each time an element is selected. Specifically, the selection of an element causes its probabilistic

weight to be reduced to zero, while the weights of the other elements grow by some amount. In

practice, the longer an element remains unchosen, the higher its likelihood of being chosen next.

The growth of the weights of unchosen elements need not be linear, however. Tenney, for example,

often used a growth function of cx, in which x was the number of times the element had gone

unchosen. At c=1, the weights of all elements remain equal regardless of time, resulting in purely

random selections. But at values of c greater than 1, the differences between the weights of

unchosen elements becomes steeper and steeper as time passes. Ultimately, the higher the value of c,

3See, for example, the interleaving note and register selections in his composition To Weave: A Meditation as discussed
by Polansky. (POLANSKY et al, 2002, p. 25).

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

7

the more fixed and periodic the sequence of element choices, as any given element will not be

chosen a second time before all of the others have been chosen first.

Knowing that a sequence of random sample values in an audio recording produces white

noise, while a sequence of repeating values yields a pitched tone, I realized that running the

statistical feedback algorithm at audio rate and tweaking the c-value would allow me to slide

smoothly between poles of harmonic order and disorder. The project set me down a more tortuous

path than I'd expected. Because WACM students were supposed to work in Lisp and MIDI, I

finagled a low-quality form of audio synthesis by modulating the amplitudes of rapid-fire

xylophone onsets. The result was rough, but promising. As expected, the value of c could be used to

move between noise and tone, with pitch dependent on the number of possible elements (that is,

the number of discrete values between -1 and 1 that could be assigned to a given sample). Timbre

varied according to the particular sequence of elements and their degree of stability over time.4

Eventually, the WACM director let me switch from Lisp to C, and I wrote a Pd external to explore

the parameters further in real time.

The code for the Pd external differed from the one in Lisp, and not simply because Lisp and

C are different. In the Lisp code, I had used native random number generation to compute each

sample value selection based on the system's probabilistic weights. The same was, of course, possible

to do in C, but Pd's native [noise~] object and its orientation toward decoupling and modularity

suggested an alternative method. Instead of reproducing the Lisp code exactly, I built what was

essentially a “transfer function” that maintains the probabilities of its elements as a cumulative list

and updates itself after processing each value of a signal array. The resulting object had three inlets,

then: two for the parameters used by Polansky and Tenney (number of elements and an exponent),

and one for incoming random numbers from a [noise~] object.5

4In my version, I inverted Tenney's exponentiation: xc. The user decides on a value of c, while x is the number of times
the element has gone unchosen.
5The current code for this object can be found at www.github.com/joshuahudelson/Statfeed.git

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

8

FIGURE 1 — ِA patch using the statfeed~ object. The large, black, number boxes assign the number of elements and
the exponent. The large canvas displays the signal.

Like any good user of Pd, my next thought was to wonder what sort of interesting output I

might generate if I drove the object with something other than [noise~]. What about an [osc~]

wave? Or a [sig~] with a constant value? As someone captivated by the numinous aura of

cybernetics, I was particularly interested in driving the object with its own outputs—in other

words, making a feedback loop of statistical feedback. Here, again, I had that familiar feeling of

freedom about the open space of the patch bay, a sense that the analog had come to oxygenate the

otherwise hermetic possibility space of the discrete and computational. Whereas Lisp, a much older

language, required me to think in purely digital terms—concatenating the random number

generation to the transfer function, making a decidedly unplayful digital tool—Pd seemed to

opened up a virtual space of creativity rooted in the idea in the interaction between disparate

entities. I would snip away the tendrils of digital determinism and unleash the becoming of the

algorithm itself.

To make a long story short (circumventing months spent tinkering and numerous

conversations with mathematicians and engineers), my fed-back version turned out to be, in

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

9

mathematical terms, something like a very bad pseudo-random number generator. In decoupling

the [noise~] objects from the rest of the code, I'd drifted, I was told, into a corner of the vast field of

Subshifts of Finite Type, which is itself a corner of the field of Symbolic Dynamics. More pointedly,

the changes to my code that Pd had led me to with its propensity towards play and openness had, in

fact, reproduced an even more primordially digital tool: pseudo-random number generation being

the example par excellence of digital computation's dogmatism. This is not to say that the results

weren't interesting. They are, and they led me to several new projects, including a numerical analysis

of the fed-back statistical feedback algorithm and a project that uses virtual linear-feedback shift

registers to perform sound synthesis. So it is not that Pd somehow inhibits creativity—far from it.

But it does throw the openness of that creativity into question. If, as I claim, the digital is not about

transistors but the much longer lineage of rationalization, then perhaps it makes sense that we find

ourselves driven back to foundational concerns about our creative possibilities by a technology that

constantly hints at that fact.

3. Conclusion

Much as Galloway claims that "language wants to be overlooked," (GALLOWAY, 2012, 62),

we might say that one side of the nature of the the digital is to virtualize itself into invisibility. This

is not in contrast to an "analog" that simply is what it presents itself as. Rather, as digital technology

today does a better and better job of black-boxing itself, it makes the older, analog technology seem

less digital by association. Pd is a wonderful tool because it gives composers power, but it does not

rescue them from the primordial questions that are relevant for composers today: what sort of work

is creativity in a world of widespread computing? Where do ideas of composer agency, choice, and

creativity find themselves along a spectrum that runs between the randomness of c=1 and

deterministic repetition? If Pd has something to teach students, it's that this question remains

fundamental. In occupying the uncanny valley between digital and analog technology, it hardly

makes learning easier, and it is not an idyllic open space of unbridled creative play. But it does,

perhaps, bring to the fore the questions computer musicians need to ask themselves as we continue

to think, create, and compute.

HUDELSON,	Joshua.	What	Pd	Can't	Teach;	What	It	Can.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-10,	November,	2021.	
	
	
	
	

10

REFERENCES

AMES, Charles. Thresholds of Confidence: An Analysis of Statistical Methods for Composition,
Part 1: Theory. Leonardo Music Journal, Vol. 5, 1995, pp. 33-38

PUCKETTE, Miller. Max at Seventeen. Computer Music Journal. Volume 26, Issue 4. Winter,
2002. pp. 31-43.

PUCKETTE, Miller. Interview on Future of Coding (podcast), episode #47, Miller Puckette -
Max/MSP and Pure Data. May 12th, 2020. <https://futureofcoding.org/episodes/047.html> last
accessed, November 26, 2021.

GALLOWAY, Alexander. The Interface Effect. Polity Press, 2012.

GALLOWAY, Alexander. Laruelle: Against the Digital. University of Minnesota Press, 2014.

DELEUZE, Gilles; GUATTARI, Felix. A Thousand Plateaus: Capitalism and Schizophrenia.
Continuum Press, 2004 (original publication of translation, 1988).

MATHEWS, M. V. The Digital Computer as a Musical Instrument. Science, New Series, Vol. 142,
No. 3592, 1963, pp. 553-557.

POLANSKY, Larry; BARNETT, Alex; WINTER, Mike. A Few More Words About James
Tenney: Dissonant Counterpoint and Statistical Feedback. Computer Music Journal, Volume 5,
Issue 2, 2011, pp. 63-82.

ABOUT THE AUTHOR

Joshua Hudelson is an independent scholar based in Beirut, Lebanon, where he studies the overlap between electrical

infrastructure and electronic dance music culture. His book project, Spectral Sound: A Cultural History of the

Frequency Domain, was supported by a Mellon/ACLS fellowship. Beyond his scholarly work, he develops interactive

digital games for Braille literacy, and he was a co-recipient of the 2017 Louis Braille "Touch of Genius" Award from

National Braille Press. He has taught at the American University of Beirut, New York University, The New School, the

Migrant Community Center of Beirut, and the Sudanese Cultural Center of Beirut. ORCID: https://orcid.org/0000-

0001-8168-435X. E-mail: joshua.hudelson@gmail.com

