
	
	
Revista	Vórtex	|	Vortex	Music	Journal	|	ISSN	2317–9937	|	http://vortex.unespar.edu.br/	
D.O.I.:	https://doi.org/10.33871/23179937.2021.9.2.12

Received	on	July	1st,	2021.	Approved	on:	November	1st,	2021.	Available	online	on:	30/11/2021.	Guest	Editor:	Dr.	Alexandre	Torres	
Porres.	Creative	Commons	CC-BY-NC.	
	

Pd and Audio Programming in the 21st Century
Eric Lyon

Virginia Tech | USA

Abstract: In celebration of the 25th anniversary of Pure
Data, this essay discusses the development of audio
programming up to the present, and considers the role
that Pd can continue to play in the computer music of the
future.

 Keywords: Pure Data, sound design, computer music,
audio programming.

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

2

n celebrating the 25th anniversary of Pd, we discuss the role of audio programming in the

practice of electronic music of the past, present, and future. Pd inhabits an important space

within audio programming, being inherently oriented toward at least two kinds of

programming – visual dataflow in the creation of Pd patches, and text-based procedural

programming in the creation of externals in C code. The open-source code of Pd provides a valuable

educational resource for audio programmers who wish to work at the procedural programming level.

Thus, Pd remains a popular choice for composer/programmers, as well as composers who enjoy

working with visual dataflow patching.

1. The Future of Music Software in 2001

20 years ago, I convened a symposium at Dartmouth College to consider the future of music

software (LYON, 2002). Most of the audio programs created at that time disappeared within a few

years. But a few audio software packages seemed more persistent, with the possibility of surviving

into the future. To explore this possibility, the symposium invited the authors of Csound, Kyma,

Max, Pd, and SuperCollider to discuss their ideas for the future of music software. 20 years later, all

five of these systems continue to flourish. The results of the symposium were published in the Winter

2002 Computer Music Journal, volume 26(4).

In the opening address to the symposium, I stated:

In the world of recorded music, which comprises most of what we listen to these days, the
term “computer music” is redundant. The prevalence of the use of computers in today’s
music demands another distinction; at its outset computer music meant experimental
music, carried out in laboratories and universities. This experimental work continues here
and at many other institutions, but most of today’s computer music is created in the field
of entertainment, whether film music or the various technology-drenched genres of rap,
techno, rock, and pop. (LYON, 2002, p. 13)

and

The distinction between experimental music and what might be termed “normative
music” – that is, music based on accepted stylistic norms – is mirrored in our software. On
the normative side of software are utility programs such as mixers, sequencers, and
reverberators. On the experimental side are the programs we discuss today. This software is
open, extensible, and invariably used in ways unanticipated by its creators. While such

I

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

3

software does not command a market on the scale of normative utility programs, it is
arguably much more influential in the long run, as it facilitates the creation of music which
today exists only in our collective imagination. And the experiments of today will lead
invariably to the norms of tomorrow. (LYON, 2002, p. 13)

In retrospect, while my intuition in 2001 that the experimental audio programs Csound,

Kyma, Max, Pd, and SuperCollider were gaining longevity has so far proved correct, the sharp

distinction I drew between “normative” and experimental audio programs is no longer sustainable

and represented an oversimplification even at the time. In 2001, there was already a long history of

experimentalism in various forms of commercial and non-academic music that was not

acknowledged in my address. The concept of experimentalism in electronic music requires a broader

interpretation that includes artists and genres such as Sun Ra, The Beatles, Parliament Funkadelic,

Disco, Detroit Techno, and many others. Within the practice of what is still referred to as “computer

music,” I think we will see increasing fluidity across the boundaries of commercial music vs. non-

commercial experimental music. This will require greater fluidity across audio software programs,

which previously maintained rather strict boundaries. We are already seeing hints of this fluidity,

notably with the Max for Live model that turned Max/MSP into a library deeply integrated into the

EDM-oriented popular software Ableton Live. Another example of such fluidity is the recent

collaboration of Miller Puckette and Irwin, interfacing Pd with Ableton Live over the Internet

(KIRN, 2021).

2. 21st Century Fluidity and Hybridity

In addition to inviting Miller Puckette, David Zicarelli, Carla Scaletti, Barry Vercoe, and James

McCartney to the Dartmouth symposium, I also invited two audio programmers whose audio

software was already on its way to obsolescence, but whose audio programming ideas were seminal:

Max Mathews and Gareth Loy. Mathews’s Music series is well-known. Perhaps less well known is

Loy’s CARL system, developed for the Computer Audio Research Lab at UC San Diego. Every

CARL audio processing program, of which there were many, could be connected to any other CARL

program using Unix pipes. This universal connectivity for audio signal is a powerful idea which has

not been satisfactorily solved on modern systems. The JACK Audio Connection Kit, which has been

around since 2002, does provide a model for interconnection of both audio and MIDI data. While

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

4

the JACK project is extremely important as an early realization of the idea of universal connectivity

for digital audio, in practice several factors have prevented the software from being adopted with the

same ubiquity as MIDI, including the complexity of using the JACK software, and the somewhat

unreliable support for MacOS. This is not intended as a criticism of JACK, but rather an observation

that in order to achieve ubiquity, most likely a broader-based coalition of programmer-designers

would be required. The ReWire protocol jointly developed by Steinberg and Propellerheads (later

Reason Studios) allowed for greater ease of interoperability between audio programs, routing both

MIDI and audio data. ReWire was discontinued in 2020 in favor of a plugin app model. And ReWire

was never a universal standard. Some applications implemented the protocol; many others did not.

The BlackHole software provides a virtual audio driver that allows any audio application to pass

audio through to other applications. BlackHole is easy to use, offers both stereo and 16-channel

drivers, and can easily be recompiled for larger numbers of channels. This is a neat solution, but

BlackHole is only available for MacOS.

Individual solutions for inter-application communication have proved robust, such as Max for

Live, or coding applications as VST plugins, which can then be integrated into any other app that

supports VST plugins. Max for Live provides a great model of seamless integration, but it only

supports interaction between two audio programs that are owned by the same company. The VST

app idea is a piecemeal solution. Theoretically this VST solution could adopted by every major audio

program, which would solve the problem of universal connectivity for audio signal across different

audio applications. Alternatively, a universal protocol might be designed, taking lessons learned from

JACK, ReWire, BlackHole Virtual Audio Driver, and other inter-application audio communication

programs. What is still needed is a reliable, easy-to-use protocol implemented with the same

universality as MIDI was in the early 1980s. The potential benefits of such a “MIDI for audio”

protocol have been evident from at least as far back as the early 1990s. Nevertheless, such a protocol

has not yet emerged, and creating one would not be an easy task. It would require participation from

most of the major audio software development companies. And it would need to accommodate

multichannel signals, given the importance of spatial audio, and doubtless need to solve many other

problems, not all of which might be obvious. But the benefit of such a protocol, should it emerge,

would be that every audio app would be able to seamlessly integrate with every other one, such that

audio apps could function as nodes on a net within the computer (and perhaps eventually on the

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

5

Internet as well). A plugin that works on one audio application would work on all other audio

applications.

Although the proposed protocol would be difficult to implement, and currently there does

not seem to be any great pressure for it to emerge, its utility might lie in a coming musical future that

is increasingly hybrid. Even in the early versions of Max, the predecessor of Pd, Miller Puckette was

aware of different kinds of users for the same software – composers, who could make pieces with Max

but could not write C code; researchers who could write Max and other software systems for the

composers to use; and realizers - power users of Max, who could also drop down into C to write

externals for composers, when needed (PUCKETTE, 2020). If we consider computer musicians

today to be anyone who uses a computer to make music, then the range of use cases across every

available piece of audio software becomes a data explosion of possibilities. In such an environment,

with every manner of audio program in use, often in very different ways, a maximally frictionless

connection of audio across arbitrary audio programs would be useful to many different computer

musicians and might accelerate the exploration of musical and technological hybrids in a positive

feedback loop.

3. Audio Programming: Old Problems Fade, New Ones Take Their Place

From the viewpoint of academic computer music, which has traditionally been very

interested in developing innovative approaches to creating sound in the digital domain, audio

programming faces two important challenges in the 21st century: first, the major inventions of new

sound synthesis and processing methods seem to have peaked by the mid-1990s; and second, there

are so many powerful audio DSP plugins for every manner of synthesis and processing that one may

ask if computer musicians still need to learn how to write procedural code. This is in sharp contrast

to the situation of the 1980s when as a composer of computer music, to engage in timbre research on

a computer, one needed to either write one’s own code, or find someone else who could write the

code for you. In the 2020s, coding is an option, but certainly not a requirement for computer

musicians. So, why keep that skill going?

Coding is a problem-solving tool that by virtue of its need for precisely specified algorithms

requires the composer/programmer to explicitly understand the musical problem under

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

6

investigation. This can bring new insights to the compositional process. The flexibility of code allows

the composer to explore an idea as deeply as desired without the risk of running into structural

limitations in audio signal chain paradigms characteristic of modern DAWs (e.g., synthesis algorithms

with a fixed number of oscillators). Procedural coding is sometimes the most direct way to implement

a complex audio algorithm. In addition to sound synthesis and processing, there are other computer

music problems that are best solved in code, such as writing drivers for new hardware interfaces,

extending networking capabilities, or working with machine learning algorithms. While it may be

true that most of the major techniques for digital sound synthesis and processing have already been

discovered, there is always room for refinement and further exploration. Even rich, expressive,

established languages with large vocabularies acquire new words from time to time (Merriam-Webster

added 520 new words to its English dictionary in January 20211). If the preceding arguments are valid

then Pd will continue to play an important role in the future of audio programming, given its free,

open-source code base that facilitates both visual dataflow and procedural coding. In the next section,

we’ll discuss an example of using procedural coding to develop a processor for Pd that would be

difficult or impossible to realize through visual dataflow programming alone.

4. A New FFTease External for Pd

Spectral processing is one problem domain for which procedural programming is currently the

best level of abstraction for audio programming, given the large amount of data that must be

processed, especially when bin-level state needs to be maintained across multiple FFT frames. These

kinds of coding problems lend themselves well to the concise iterative loops and easily manipulated

data structures afforded by text-based procedural languages such as C. The FFTease collection of

externals for spectral processing was created by Christopher Penrose and me in 1999 (PENROSE, C.;

LYON, Eric, 2000). This collection of externals was preceded by about a decade of research by the

both of us into non-real-time spectral processing on Unix systems. Many non-real-time spectral

processing algorithms that we created and used in our compositions in that early period never made

it into FFTease, sometimes because they did not easily translate from non-real-time to real-time

1 https://www.merriam-webster.com/words-at-play/new-words-in-the-dictionary (accessed July 15, 2021)

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

7

processing, but mostly because there were so many processors in our two Unix collections PVNation

and POWERpv (LYON, 1996) that it was not practical to port all of them to FFTease. But all of that

old code still exists, some of it might be worth porting, and at the very least, it could be suggestive of

new processor models. A new FFTease of external will illustrate this point.

I recently implemented a new FFTease external in Pd, called loopsea~. This object was inspired

by a Penrose processor, “aphrodite” from his Unix collection PVNation. The original “aphrodite”

algorithm independently loops blocks of bins from a chunk of stored FFT frames. “Aphrodite” is an

impressive algorithm, but it’s not really set up for real-time use. Rather than try to reimplement

“aphrodite” I took inspiration from the idea of looping bins from a stored series of FFT frames, and

rather than looping blocks of bins, decided to loop each bin independently, creating a “sea of loops.”

With this idea in hand, the implementation in C was straightforward. I had previously created two

FFTease objects, residency~ and resent~ which operate on a stored series of FFT frames with arbitrary

and independent control over speed and frequency scaling. The architecture of loopsea~ is similar,

except that start and end frames for individual loops are stored for each FFT bin. The loopsea~ object

is instantiated with a fixed amount of spectral memory, defined in milliseconds. An input audio

signal can be directly recorded into this spectral memory. Individual loops are then generated with

the message “setloops” with two parameters, a minimum and a maximum loop size. If both

parameters are identical, every loop will be the same length. Otherwise, each loop will be of randomly

different size, and the individual bins will drift out of phase, with each bin loop having a potentially

quite noticeable periodicity.

A few other refinements were implemented. First, the speed of the loops can be set globally

with the “setspeed” method. A method called “randspeed” allows each loop speed to be randomly

set, so that even if the loop durations are all identical, each loop will progress at a different speed. A

further refinement was coded to allow for oscillator bank resynthesis. Given that most of the loops

are likely to contain negligible amounts of noise, it is useful to have a synthesis threshold to eliminate

bins that contain relatively little energy. This is controlled with the “synthresh” method. The

“transpose” method allows for the entire resynthesized sound to be pitch-scaled without changing

speed. The “randtransp” method generates a random transposition factor for each bin between

minimum and maximum values provided by the user. Finally, the “transp_choose” method followed

by a list of transposition options randomly assigns one of the transposition options to each bin. This

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

8

method can create interesting harmonizer-like effects. So that users can store a loop setting, with the

loop point, transposition factor and speed factor for each bin, two methods are provided:

“printloops” dumps all of this data from a list outlet on the object, and “readloops” loads all of this

data back into a loopsea~ object.

A typical usage of loopsea~ is shown in Figure 1. As this example demonstrates, it is still possible

to come up with DSP ideas that are relatively easy to implement in Pd with procedural coding but

might otherwise be considerably more complex.

FIGURA 1 – A typical use of the FFTease loopsea~ external in Pd

Source: FFTease (Lyon, 2021)

5. Conclusion

In celebrating 25 years of Pd, we considered the creative and research space in which Pd

emerged and speculated about developments beyond that origin for audio programming, and how

Pd might fit into future developments of computer music, broadly construed. In that developing

future, new audio programming contexts are emerging for which Pd should continue to serve as

an excellent platform for an increasing range of computer music scenarios.

LYON,	Eric.	Pd	and	Audio	Programming	in	the	21st	Century.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-9,	November,	2021.	
	
	
	
	

9

REFERENCES

Future of Coding podcast interview with Miller Puckette, 2020-05-12.
<https://futureofcoding.org/episodes/047.html> (accessed July 15, 2021)

KIRN, Peter. Miller Puckette, Creator of Max and Pd on How He’s Patching His Way to Remote
Collaboration. https://cdm.link/2021/03/miller-puckette-creator-of-max-and-pd-on-how-hes-
patching-his-way-to-remote-collaboration/ (Accessed July 19, 2021.)

LYON, Eric. Dartmouth Symposium on the Future of Computer Music Software: A Panel
Discussion. Computer Music Journal, 26:4, pp. 13-30, 2002.

LYON, Eric. POWERpv: A Suite of Sound Processors. In: Proceedings of the International Computer
Music Conference, pp. 285-286. ICMA, 1996.

PENROSE, C.; LYON, Eric. FFTease: A Collection of Spectral Signal Processors for Max/MSP. In:
Proceedings of the International Computer Music Conference, pp. 496-498. ICMA, 2000.

ABOUT THE AUTHOR

Eric Lyon is a composer, audio programmer, curator, and educator whose work focuses on chaos music, oracular sound
processing, post-hierarchies, and spatial orchestration for high-density loudspeaker arrays. Lyon’s creative work has been
recognized with a ZKM Giga-Hertz prize, MUSLAB award, the League ISCM World Music Days competition, and a
Guggenheim Fellowship. Lyon teaches in the School of Performing Arts at Virginia Tech, and is a Faculty Fellow at the
Institute for Creativity, Arts, and Technology. E-mail: ericlyon@vt.edu

