
	
	
Revista	Vórtex	|	Vortex	Music	Journal	|	ISSN	2317–9937	|	http://vortex.unespar.edu.br/
D.O.I.:	https://doi.org/10.33871/23179937.2021.9.2.21

Received	on	July	1st,	2021.	Approved	on:	November	1st,	2021.	Available	online	on:	30/11/2021.	Guest	Editor:	Dr.	Alexandre	Torres	
Porres.	Creative	Commons	CC-BY-NC.	
	

Patches in a timeline with ossia score
Jean-Michaël Celerier

ossia.io | France

Abstract: Handling of time and scores in patchers such
as PureData, Max/MSP has been an ongoing concern for
composers and users of such software. We introduce an
integration of PureData inside the ossia score interactive
and intermedia sequencer, based on libpd. This integra-
tion allows to score precisely event that are being sent to a
PureData patch, and process the result of the patch’s
computations afterwards in score. This paper describes the
way this integration has been achieved, and how it enables
composers to easily add a temporal dimension to a set of
patches, by leveraging both the computational power of
PureData and the temporal semantics of the ossia system,
in order to create complex compositions.

 Keywords: pure data, ossia score, timeline, interactive
scores, patching

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

2

 core concern when writing music in patch-centric software is the creation of scores. That

is, how does one sequence events, create transitions, and more generally define variations

over time for the patch’s parameters and inputs in a scripted, non-algorithmic way. The

question of defining what constitutes a score for interactive and intermedia software and hardware

has been studied extensively in the ossia project. In this paper, we will show how the result of this

work can be applied to PureData, in order to improve on the current ways to author and execute

scores in real-time for Pd patches, as this is a long-standing issue in the community, described in detail

by Miller Puckette, PureData’s author:

In its most succinct form, the problem is that, while we have good paradigms for describing
processes (such as in the Max or Pd programs as they stand today), and while much work
has been done on representations of musical data (ranging from searchable databases of
sound to Patchwork and OpenMusic, and including Pd’s unfinished “data” editor), we lack
a fluid mechanism for the two worlds to interoperate. (PUCKETTE, 2004).

This paper will first present the possible ways to write and execute such scores in music-centric

patching environments, mainly PureData, Max/MSP, OpenMusic. Then, it will introduce the free

and open-source ossia score software for interactive and intermedia score authoring. Finally, the

integration of PureData in ossia score, a novel development based on the well-known libpd library

(BRINKMANN, 2011), will be described in detail.

1. Scoring patches

1.1 Typology of scoring approaches

The conducted literature review brings us to a two-fold separation of scoring approaches,

which we will call external and internal. We define external scoring approaches as any scoring system

that runs outside of the patching environment itself. In contrast, internal approaches embed the

score system inside the patch, either as primitives of the patcher environment or as external objects.

These two methodologies imply vastly different mindsets for the authors: in the first case, the

primary interaction while writing the score will be with a software distinct from the patcher; the

patch – or patches, as this approach generally allows to score multiple separate patches in a single

A

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

3

score – are individual instruments or effects. In contrast, in the second case, the primary authoring

environment is the patcher; multiple score parts can be embedded in the patch and triggered with

actions and events originating from the patch software, such as, in the PureData case, bangs, [metro]

etc.

We posit that these two approaches generally invite the composers to different styles of

authoring and may lead to substantially different artworks.

1.2 External approaches

The most common way to score a patch is by using an external communication channel. For

instance, sending MIDI or OSC messages from an external scoring system or even a hardware

sequencer can already provide a first level of scoring to e.g. instruments authored as patches.

An important development which occurred during the last decade is the integration of

Max/MSP into the Ableton Live sequencer. Whereas the previous approach provided a weak

connection between the patcher and the scoring software, this approach allows for a much tighter

integration of the patcher (Max) into a software usable for scoring (Ableton Live) due to its timeline.

The main drawback is that both software are proprietary.

Another way to embed a patcher into an existing host is through the common plug-in

specifications, such as Steinberg VST, AudioUnits, etc. This is the approach for instance followed by

patching software such as Usine, or with Camomile (GUILLOT, 2018), which embeds Pd inside a

VST or AU plug-in so that any compliant digital audio workstation (DAW) can load it. The main

benefit of this approach is its broad compatibility: most music software support loading such plug-

ins. This means that the composer can very continue using his usual DAW and import bits and pieces

of Pd wherever needed. However, the communication interface between audio plug-ins and DAWs is

fairly limited. For instance, the VST 2.4 specification only allows exchanging floating point values

between 0.0 and 1.0, which makes it tedious or impossible to exchange string messages, bangs, and

other non-float messages beyond what the VST specification allows.

Finally, some DAWs provide hybrid integration of a custom patching mechanism. This is the

case for the commercial DAW Bitwig Studio with the Grid, and for ossia score as we will show

afterwards.

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

4

1.3 Internal approaches

Conversely, due to the extensibility of most patcher software with externals, it is possible and

even common to have externals dedicated to implementing a scoring mechanism as objects of a patch.

Bach (AGOSTINI, 2015 and GHISI, 2017) is such an environment, for Max/MSP. It contains an

extensive set of objects allowing to embed, author and playback western or even custom graphical

scores directly from within Max.

Miller Puckette proposed as far back as 2002 using Pd as a score language (PUCKETTE, 2002),

using its primitives for defining and playing back graphical structures. More recently, Gemnotes

(KELLY, 2011) introduced an actual staff-like musical notation system based on a custom textual

language and an external into PureData.

Finally, Patchwork and its successor OpenMusic (ASSAYAG, 1999) are patch-based systems

for computer-aided composition: the objects provided by the system are all geared towards generating

pieces of a score through algorithmic means. More recently, OpenMusic also acquired reactive

semantics (BRESSON, 2014) in a way that brings it closer to real-time systems such as Pd.

1.4 Implications of each approach

The core benefit of the external approach is that it generally does not need any additional

modification or addition of plug-ins to the patcher software to work. For instance PureData has

built-in support for MIDI and OSC message input. This makes this approach very suitable for

teaching, as it removes a friction point with people novice to PureData composition.

In contrast, the internal approach, may require additional set-up but tends to offer more

freedom and of course a deeper integration with the patching environment; an expert user of a

patching software will feel more at home with scoring primitives implemented as plug-ins to the

patcher, than with an entirely different software.

There are a few drawbacks to the external approach: the first is the lack of reflection (in the

computer science meaning) on the inputs and outputs of the patch. This means that the person

sending OSC or MIDI messages must check the documentation of the patch manually in order to

discover which OSC parameters, MIDI control changes etc. are available, and what are their range of

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

5

acceptable values. For instance, Fig. 1 showcases a trivial example of patch receiving OSC messages to

generate a sound at a given frequency: the patch has to take care to manually limit the input as the

protocol allows someone to send arbitrarily high or low values besides the acceptable range for the

virtual instrument. In contrast, for the internal approach, one can generally easily connect the

temporal scoring of a part of a song, to events in the patch, simply by using the same kind of

connections between objects they are used to.

The second issue is the management of the project files and system – running multiple distinct

software for a piece means that, for instance, their save file must be kept in sync for the final score,

that one must take care of the order in which the software must be started for the case of automated

performances where the score software sends a “play” message to the patch. This increases friction

and difficulty for non-computer-science enthusiasts who must now handle a set of software issues

entirely unrelated the artistic work. In the internal approach, this issue does not exist as there is only

one software and document, which contains everything.

Finally, a third issue is that network or MIDI messages are by their nature asynchronous, and

in the case of OSC messages, often sent over unreliable communication channels – even if band-aids

such as time-stamping can help improve accuracy, it is in the general case not possible to reach the

level of accuracy, consistency and reproducibility that one gets with a synchronous system.

The libossia library provides a set of objects allowing to give a specification to the network

inputs / outputs of a patch (in PureData, Max/MSP and a set of other common creative coding

software such as Processing, OpenFrameworks…) which can help alleviating some of the issues

encountered here, thanks to the OSCQuery protocol which allows the parameters of a patch to be

reflected over an internet protocol such as HTTP or WebSockets.

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

6

FIGURE 1 – Example of a Pd patch that receives a frequency information via OSC and then uses it to synthesize a sine
wave which is output to the computer’s speaker. The frequency is clamped manually between 20 Hz and 800 Hz, as

there is no way in the OSC protocol to ensure that a parameter is fixed in a given range.

Source: Jean-Michaël Celerier

1.5 Motivation

The motivation for this research is to provide an external, score-first environment tailored to

PureData, which would be able to score its data types over time with as much temporal accuracy as

possible, and able to manage complete scores involving multiple separate patches. We propose to do

such a development in the ossia score software system, described thereafter, as it has been specifically

tailored for this kind of embedding.

2. The ossia software system

The ossia project, introduced in (Celerier, 2015) and detailed in (Celerier, 2018) traces its roots

back to Boxes (Beurivé, 2000), Iscore (Allombert, 2008). It is composed of the ossia score sequencer

and libossia software library. The sequencer has three specificities:

• Its timeline allows to score interaction and non-linear behaviors: that is, with the use of

triggers and conditions, two elements of its domain-specific visual language, one can write a

score with the following semantics: “Play a sound until a musician presses a button. Then, if

a game-pad controller is pushed to the left, wait a second, play another sound and end the

score. Otherwise, immediately loop back to the beginning of the score”. This example score

is given in Fig. 2.

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

7

FIGURE 2.1 – Example of an ossia score score which showcases three logic elements: the Trigger (yellow T with a
downwards arrow) indicates that the score is waiting for an external interaction to proceed past that point. This

interaction can be, for instance, receiving an OSC or MIDI message. The Condition (yellow C) indicates that what
follows it will only execute if a given statement is true at the time the score’s execution reaches that point. The dashed
blue line indicates that this content’s duration is not fixed (as it depends on when the following Trigger is going to be

triggered). The full blue line indicates a fixed duration. Finally, the dashed-dotted line indicates an instantaneous
“jump” in time, which can go backwards and thus easily implement looping behaviors.

Source: Jean-Michaël Celerier

FIGURE 2.2 – Execution of such the score of Fig. 2.1. The branches not taken are in red, the branches taken are
in red. The gray vertical bar indicates the absolute play time since the beginning: note that it is de-synchronized with the

actual execution position for the elements of the score being played (in green): this is because each trigger can be
triggered at a time unbeknownst to the composer, leading to an infinite set of executions instead of a single fixed one.

Source: Jean-Michaël Celerier

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

8

• Its data model allows to score various kind of values – audio, floating point, integers,

character strings, lists, video, MIDI in a similar fashion to patchers and unlike common

DAWs who generally only support audio, MIDI and floating-point controls as data types.

The support for these data types stems from the origins of ossia score as a sequencer for OSC

data.

• It merges the timeline and patcher model in a single generalized system allowing to patch

inputs and outputs in a timely manner: an ossia score program’s execution can be thought of

as a sequence of processes automatically connected and disconnected from the underlying

data-flow graph depending on whether they have been scored at a given point in time. That

is, one can write a score where for the first half the sound input is routed to a first effect

graph, and where for the second half the sound input is routed to another effect graph. Such

a score is given in example in Fig. 3.

FIGURE 3 – A score with two successive effects being applied to a sound file. The first effect, an echo, will be
applied from the beginning of the score to the 40 second mark ; the second effect, an effect chain consisting of a reverb

and a chorus, will be applied from the 25 second mark to a bit after the song ended. A single automation is used to
automate parameters pertaining to both the reverb and the echo effects.

Source: Jean-Michaël Celerier

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

9

Being built following a C++-plug-in-based design methodology, ossia score is easily extensible. It

embeds multiple programming languages: Javascript, Faust, GLSL, C++, Exprtk, Bytebeat, which

can all be readily used in scores: one can write a score which runs a first Javascript program regularly

for the first minute of a score, then a sound, then a Faust synthesizer whose MIDI input is generated

by another Javascript program.

From these, it follows that PureData is a natural candidate for being embedded in score, in a

similar fashion to other programming languages.

2. 1. Processes in score

The main way computations, sound or MIDI playback, automation, ... are being performed

within score is through the notion of process, which is analogous to Pd or Max objects ; the main

difference being that every ossia score process has the built-in ability of doing timekeeping, having a

duration, and more generally maintaining time-related information, which allows transformations to

happen in an uniform way: scaling, speeding up or slowing down, increasing the duration without

changing the relative time of the process’s contents is possible. Otherwise, processes are simply nodes

of a data-flow graph.

Every process has inputs and outputs, specified by ports (the small colored dots on the above

figures). Ports can either be connected to an OSC address, MIDI control etc. or to another process

by a cable. Communication between processes in score is synchronous and sample-accurate: every

message is timestamped with the sample at which it was generated.

Inputs can optionally be matched with a specific kind of GUI control. For instance, sliders,

check-boxes etc., which can of course be changed in real-time during execution of the score.

3. Embedding PureData in ossia score

We used libpd to embed the execution of PureData patches in ossia score. A score plug-in is used

to create interoperability between score’s data structures and libpd’s API. We try to match the data

types as closely as possible: transport of floats, strings, bangs, boolean values, lists, MIDI, audio data

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

10

are supported without data loss. A given PureData patch will be loaded into a score process, which

will reflect the patch’s declared inputs and outputs into score’s user interface.

The multi-instance feature of libpd is used to enable multiple concurrent patches. This has the

consequence that externals need to be rebuilt (by setting the pre-processor define PDINSTANCE=1

when building the external), as the “normal” and the “multi-instance” builds of PureData are not

binary-compatible. The libpd integration is configured in order to look for externals in the folder

where the patch is; at some point in the future the software could give access to additional paths to

look for externals in as part of its settings panel.

3. 1. User interface

The PureData integration behaves like the other ossia score processes integrating an external

language or environment: it relies on drag-and-drop for easy manipulation. One can drop a .pd file

into a score and the patch will be loaded at the point of the drop. If the user has Pure Data installed,

a button will allow the user to open the patch for edition in the software; otherwise, only execution

of the patch and modification of the specified parameters will be supported. The current

implementation allows modification of the Pd patch to be taken into account by ossia score in real-

time thanks to libpd’s ability to open the Pd user interface.

3. 2. Audio inputs and outputs

There is one major semantic difference between ossia score and Pd: in ossia score, audio cables

and ports are multichannel by default. Conversely, in Pd, audio cables carry one channel. Thus,

multiple audio inputs and outputs in the Pd patch are mapped to one audio port in score.

A small discrepancy occurs because of time handling in Pd being based on blocks of 64-frames:

ossia score’s engine can (and sometimes will) ask to its plug-ins to process blocks of arbitrary length.

This is because a given audio process can start, for instance, at sample 17 and run until sample 38, for

a total of 21 samples. In that case, we zero-pad the data fed to PureData.

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

11

3. 3. Controls

FIGURE 4 – Controls generated in ossia score (left) from a Pd patch (right).

Source: Jean-Michaël Celerier

Score provides a user interface control library: 1D / 2D sliders, log sliders, buttons, color

pickers… Those controls can have multiple properties. For instance, a min, max, init value,

description. In order to be able to pick up this information from Pd, to create adequate controls in

score, we leverage the [receive] and [send] Pd objects and the undocumented fact that they ignore

anything past their first argument: we scan the patch for objects such as [receive $0-something <…

arguments...>] and add them as controls to the score, by using additional metadata that can be

appended to the object. In general, the same syntax than what is available for the [ossia] externals for

Pd is used; note that this implementation does not use the [ossia] objects which as mentioned before

are concerned with the specification of a network communication protocol over OSC. Here are a few

examples; Fig. 4 provides a screenshot of the patch and matching process in ossia score.

• [r $0-volume @type float @range 0 10 @default 1]: creates a floating point slider ranging from

0 to 10 with a default value of 1 in score.

• [r $0-waveform @widget enum @range sine triangle square]: creates a multi-choice widget

which allows to select one of the three values, sent as a symbol to Pd.

• [r $0-tint @unit color.rgb]: creates a color picker.

• [r $0-trigger @type impulse]: creates a button equivalent to a bang.

• [r $0-enabled @widget checkbox @default true]: creates a checkbox.

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

12

An extensive list of possible types, units, and other is available in the documentation of the software.

The main benefit to this approach is that ossia score’s execution engine is aware of the ranges and units

of its inputs and outputs ports, and will perform automatic conversions wherever applicable. For

instance, if an OSC address specified as an RGBA color is used as input of a port specified as HSV,

the color will automatically be converted from RGBA to HSV whenever a message is received.

Further work will also look for the built-in visual objects of PureData which also have the ability of

being annotated as receiving a symbol directly, and extract their metadata through parsing of the Pd

data file.

Likewise, [send] objects will be mirrored in score as output ports.

3.4. Missing features

A few ossia features haven’t yet found their way into the PureData integration. The two main

features are the support for video processing & visuals, and the support for musical metrics. In the

first case, ossia score leverages the Qt RHI library for handling real-time GPU visuals based on Vulkan,

OpenGL, Metal and Direct3D; in particular it supports the Interactive Shader Format specification.

It is as of yet unclear to the author how one may be able to insert Pd in the middle of a video processing

chain handled by score, as it tries to offload as much computation as possible onto the GPU and does

not do any CPU-based visual processing; everything goes through shaders for rendering.

In the second case, the main issue is that score maintains knowledge of musical metrics: tempo,

measure. This allows the composers to quantize events on musical marks: for instance, if a trigger is

triggered by an OSC message, it can optionally wait until the next bar, quaver etc. in order to keep

synchronization with a rhythmic setup. This works for score processes even if they do not start on

quantized times: an arpeggiator process which starts at frame 1357 (which would not fall on any

reasonable musical mark, assuming for instance a sample rate of 44100 and 120bpm in 4/4) will still

be in sync. The issue in the Pd synchronization is that we haven’t found a way to indicate to Pd that

its execution time is offset by some amount, for instance if one wants to use [metro] as a metronome

within the patch: the first tick of the metronome will necessarily be at the first sample rendered by

Pd which will not fall on the musical synchronization point. Thus, if one wants a Pd process to be

synchronized, either the start time of the process in score must be for instance at the start of a bar, or

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

13

the author of the score must add a special input to the patch that will provide bangs synchronized

with the musical metrics of the score by connecting a suitable generator from score to this patch’s

input port.

4. Conclusion

We introduced a way to score PureData patches in a timeline, by integrating Pd as an ossia score

process. This allows patch authors to easily use score’s time-centric features as a way to give a temporal

specification to patches. For instance, by using automation, triggers, and more generally the entire

temporal syntax of score. This is done in the hope of enabling authors of interactive and generative

music to introduce time-based constructions more easily into their work, as well as in a way to access

the vast amount of music software written in Pd from within ossia score. The integration covers most

of the routine features of PureData, but lacks more advanced integration, most importantly in terms

of video support.

It remains to be seen how various artists will adapt to this way of authoring scores, and in

particular how being integrated in a scoring environment can change the way PureData patches are

written. Anecdotal evidence from the author’s usage so far tends towards small “do-one-thing”

patches which are instanced at multiple points in the score: noise generators, filters, etc. Input of the

Camomile users could also be worthwhile, as both systems lend themselves to similar use cases.

ACKNOWLEDGMENT

Part of this work has been funded by the SCRIME: Studio de Création et de Recherche en

Informatique et Musiques Expérimentales (Creation and Research Studio in Computer Science and

Experimental Music), Talence, France.

REFERENCES

AGOSTINI, Andrea and GHISI, Daniele. A max library for musical notation and computer-aided
composition. Computer Music Journal, 2015, vol. 39, no 2, p. 11-27.

CELERIER,	Jean-Michaël.	Patches	in	a	timeline	with	ossia	score.	Revista	Vórtex,	Curitiba,	v.9,	n.2,	p.	1-14,	November,	2021.
	
	
	
	

14

ALLOMBERT, Antoine, DESAINTE-CATHERINE, Myriam, and ASSAYAG, Gérard. De Boxes
à Iscore: vers une écriture de l'interaction. Actes des 13èmes Journées de l'Informatique Musicale. 2008.
p. 79-83.

ASSAYAG, Gérard, RUEDA, Camilo, LAURSON, Mikael, et al. Computer-assisted composition
at IRCAM: From PatchWork to OpenMusic. Computer music journal, 1999, vol. 23, no 3, p. 59-72.

BEURIVÉ, Antoine. Un logiciel de composition musicale combinant un modèle spectral, des
structures hiérarchiques et des contraintes. Actes des Journées d’Informatique Musicale, Bordeaux,
France, 2000.

BRESSON, Jean and GIAVITTO, Jean-Louis. A reactive extension of the OpenMusic visual
programming language. Journal of Visual Languages & Computing, 2014, vol. 25, no 4, p. 363-375.

BRINKMANN, Peter, KIRN, Peter, LAWLER, Richard, et al. Embedding Pure Data with libpd.
In : Proceedings of the Pure Data Convention. Citeseer, 2011.

CELERIER, Jean-Michaël, BALTAZAR, Pascal, BOSSUT, Clément, et al. OSSIA: Towards a
unified interface for scoring time and interaction. Proceedings of the First International Conference on
Technologies for Music Notation and Representation. 2015.

CELERIER, Jean-Michael. Authoring interactive media: a logical & temporal approach. Doctoral
thesis. 2018. Bordeaux, France.

GHISI, Daniele and AGOSTINI, Andrea. Extending bach: A family of libraries for real-time
computer-assisted composition in max. Journal of New Music Research, 2017, vol. 46, no 1, p. 34-53.

GUILLOT, Pierre. Camomile: Creating audio plugins with Pure Data. Proceedings of the 2018 Linux
Audio Conference. 2018, June.

KELLY, Edward. Gemnotes: a realtime music notation system for Pure Data. Proceedings of the 4th
international conference of Pure Data. 2011.

PUCKETTE, Miller. A divide between “compositional” and “performative” aspects of Pd.
Proceedings of the First International Pd Convention. 2004.

PUCKETTE, Miller. Using Pd as a score language. Proceedings of the 2002 International Computer
Music Conference. 2002.

ABOUT THE AUTHOR

Jean-Michaël Celerier, born in France in 1992, is a freelance researcher, interested in art, code, computer music and

interactive show control. He studied software engineering, computer science & multimedia technologies at Bordeaux,

and obtained his doctorate on the topic of authoring temporal media in 2018. He develops and maintains a range of free

& open-source software used for creative coding, digital and intermedia art, which he leverages in various installations

and works. He enjoys organizing events centered on programming and media art and teaches all sorts of creative coding

systems to both computer science and graphics design students. ORCID: https://orcid.org/0000-0003-1253-298X. E-

mail: jeanmichael.celerier@gmail.com

