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Abstract: Two frameworks are described, within the 
larger framework of Pure Data, that aim to facilitate the 
creation and preservation of electronic music that is per-
formed live in real time. These are not part of Pd itself, 
because they are more directly tailored to a specific appli-
cation space than Pd should be. They are nonetheless de-
signed, like Pd, to minimize any unnecessary stylistic im-
position on creators of electronic music. The Null Piece 
is a starting point for building live performance patches. 
It provides basic audio routing and parameter control 
while leaving other choices as free as possible. Reality 
Check is an attempt to aid in the long-term maintenance 
of a musical realization by verifying whether a piece still 
runs as intended despite the inevitable evolution of hard-
ware and software. 
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lthough Pure Data is now many things to many people, one central design goal has been 

to support the creation of long-lasting interactive works of electronic art, particularly 

music. This is perhaps the main reason that Pd has evolved so slowly over the years (much 

more so than many other such platforms). This is also why Pd's core has remained relatively small - 

small enough, I hope, to allow it to be maintained indefinitely in its present form.  

A related design goal is to show what I call the “blank sheet of paper” quality: that Pd should 

avoid encouraging a particular work flow or design paradigm for creating artworks. This has 

complicated implications that I've written about elsewhere. The one that concerns us here is that a 

subset of users could easily emerge that find themselves solving the same problems. This situation 

sometimes calls for the creation of added functionalities, not a part of Pd's core, that can be used by 

these user subsets.  

One such functionality might be the creation of music for stage performance, in which a 

computer has some number of audio inputs and outputs that are connected to a f ixed network of 

audio analysis, synthesis, and processing modules.  Very commonly desired capabilities include 

metering of inputs and outputs, presentation of test inputs from soundfiles (or just simple test tones) 

to the audio modules, synchronous recording of inputs and outputs during rehearsals or live 

performances, setting and displaying numerical parameters, controlling gains, and saving and 

recalling presets, either individually or in a sequence. I've helped composers develop pieces along these 

lines since 1985, and over time have arrived at a template I always start from, that I call the “Null 

Piece”. 

A long-standing and complementary need has been to maintain Pd patches for stage 

performance so that they can remain usable over periods of time measured in decades (and perhaps 

even longer). This is a hard problem for many reasons, but one fairly simple tool can help a great deal: 

a facility for simulating a stage performance to verify whether a given patch produces the historically 

correct output. To this end I've developed a package called “Reality Check” that uses the pd~ object 

to run a realization of a musical piece in a sub-instance of Pd and check the correctness of its output.  

Neither of the two projects described here is especially novel.  The Null Piece has an important 

antecedent in Integra Live, a platform built in support of the Integra Project (Rudi 2011). The Null 

Piece is quite modest in comparison. Its design trades off modularity and scaffolding in favor of easy 

extensibility and extremely low maintenance load.  

A 
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There is a rich history of literature about, and prior efforts to address, the short lifespans of 

electronic music realizations (Vincent 2010; Bonardi 2015; Akkermann 2017; Lindemann 2020). 

The skeptical reader could predict that Reality Check will soon join the ash heap that houses so many 

earlier preservation projects. All I can propose here is to learn what we can from earlier experience 

and keep at it. 

 

1. The Null Piece 

 

The Null Piece comes in two versions, “0” and “1”. The “0” version is intended for pieces with 

any structure (fixed-score, open form, improvised, algorithmic, whatever). The “1” version contains 

everything in “0”, plus a facility for linear sequencing intended for through-written musical scores.  

The design of the Null Piece assumes that most creators of musical realizations in Pd will want 

at least certain basic functions: 

 

• audio input and output, with gain controls and level metering  

• using a soundfile or a test tone as input to the patch  

• recording the input and/or output of the patch to a soundfile  

• setting and viewing numerical parameters by hand or via Pd messages  

• ramping numerical parameters up and down over time intervals  

• controlling audio gain at various stages in the patch  

• saving the current values of parameters to a text buffer or file  

• a reset mechanism to put all parameters into a fixed initial state 

 

The “1” version also provides a sequencer that sends Pd messages, single-stepped and/or timed, 

to the rest of the patch.  

Although these features all might seem to be rather easy to code, the precise way they are made 

can greatly affect how well the patch works. The particular design choices presented here have evolved 

substantially over the past thirty years, and, while they are nothing earthshaking, it is worth going 

into the reasoning behind them.  

These features are intentionally not part of the design of Pd itself. Software programs such as 
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DAWs, oriented toward specific musical tasks, tend to have these functions already built in.  Pd makes 

it possible to make media applications that do not even hew to an audio sample clock. In such 

applications some or even all of the above desiderata might be superfluous, and might even “nudge” 

artists in directions that don't directly serve their aims. Although providing affordances is always a 

positive, one needn't bundle every possible affordance together in a single package. 

There is no assertion here that the Null Piece is made in the one and only “correct” style for 

building music performance realizations, but only that it is a pretty good style from which individual 

musicians will probably want to adapt their own personal one. 

The Null Piece is published as part of the Pd Repertory Project, on the URL 

msp.ucsd.edu/pdrp. 

 

1.1. Overview 

 

Figure 1 shows the screen layout of the 1 version. (The 0 version is the same except that the 

only sequencing control provided is the “reset” button.) The entire “piece” consists of one audio 

transformation, which sends channel 1 of the input to two channels of output. One parameter, 

“direct”, controls the gain. The layout is considered as a workable template for a performance patch, 

showing those elements which are to be seen and/or controlled during a rehearsal or performance and 

hiding most of the rest. A patch for a real piece might look much the same, but with more parameter 

controls. 

 

FIGURE 1 – Pure Data patch for the Null Piece. 
 

 
 

Source: the author 
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Much of the design is concerned with management of parameters. These come in two types: 

manual and automatable. Manual controls might be used to adjust for a particular acoustic situation 

without saving anything for future performances. They could include the input and output signal 

gain, test tone levels, and controls for the soundfile reader and writer; these are thought of as external 

to the piece but might be relevant to a particular rehearsal goal, speaker placement, and audience mass. 

They might also allow for live control of a mix using an external controller. 

The display and control of manual controls is aided by the setctl abstraction (which, along with 

four other abstractions and one supporting text f ile, are placed in a sub-directory named “lib”). 

Whenever a message is sent to, for instance, “test-tone”, the setctl abstraction catches the message, 

converts it to a “set” message, and sends it to any object bound to “test-tone-set”. The test tone gain 

control (a number box) has the send signal “test-tone” and the receive signal “test-tone-set”. So the 

test tone gain is both set and displayed by the control. 

Controls meant to be sequenced or otherwise automated can use a more general abstraction 

named “genctl”. This abstraction contains logic to display the progress of ramps in which the 

parameter is sent a pair of numbers, the second one giving a ramp time in milliseconds. Whatever 

object actually enacts the ramp might do so using a “line” object of arbitrary grain, or one of its two 

signal variants, line~ or vline. Using the same “set” mechanism as the setctl abstraction, genctl 

generates a separate ramp updated at a viewable rate. The genctl abstraction also interacts with a 

parameter-grabbing mechanism to aid in making presets or sequencer steps, described in the 

“parameter grabbing” section below.  

 

1.2. Audio signal path 

 

The audio signal path is shown in figure 2. The input of the patch may be taken from Pd's 

audio input (an audio interface or virtual audio device), and/or a test tone, a streaming soundfile 

reader, or via an auxiliary catch object (in case you want to use another patch such as Quacktrip as 

input, for example). Audio inputs and outputs have gain controls and level meters, which are post-

fader. The input level control sets only the gain of the external audio interface, not the additional 

inputs, so that you can suppress the microphone input while using a different one. Both the input 

and output level use 4th-power (quartic) curves, with “50” set to unity; this scale is described under 
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“gain controls” below.  

 

FIGURE 2 – Audio signal pathways in the Null Piece. 
 

 
 

Source: the author 
 

The test tone can be set either to a sinusoid or low-pass-filtered white noise (in which case the 

“pitch” control sets the cutoff frequency of the filter). A subpatch (“pd soundfile-in-out”) contains 

a GUI for choosing, opening, and playing a portion of a soundfile through the patch, optionally 

looping it. 

The null patch contains only one audio “process” (a direct gain from input 1 to outputs 1 and 

2) with the understanding that you will add your own modules, perhaps keeping the “direct” as a 

convenient test of the audio path.  You can also add more input and/or output channels. Output may 

be streamed back to disk, at the same gain as sent to the audio output. By default only the two outputs 

are streamed, but here again you can elect to add other channels which may be additional outputs, 

any or all inputs, and/or intermediate signals for testing.  This is all done by editing the “input” and/or 

“output” subpatches. 

 

1.3. Gain controls 

 

Most patches are likely to contain numerous gain controls as various inputs are sent to various 

processing elements whose outputs are sent to yet other processing elements and/or output channels. 
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In Pd, gain is applied to an audio signal (consisting of one or more channels) by generating a 

continuously variable “gain” audio signal and multiplying it by each of the channels. An abstraction. 

amp4~, is provided to generate a gain signal. The design of amp4~ is intended to satisfy the needs 

arising in most gain-control situations without being any more complicated than necessary. 

The amp4~ object is invoked with a parameter name, through which it receives messages that 

can come from anywhere else in the patch (and which can be shown on a corresponding number box 

via the setctl or genctl abstraction). A pair of values specifies a ramp, with the second value giving a 

ramp time in milliseconds. If no ramp time is given the ramp defaults to 20 milliseconds (this may be 

overridden using an optional argument). If a ramp time of zero is desired despite a non-zero default 

ramp time, it may be specified explicitly in a message. 

Two scales are implied by this design: f irst, a scale whereby a numerical parameter specifies a 

non-time-varying gain; and a second scale that determines how ramps behave over time. These two 

scales have distinct criteria. 

The input scale is chosen so that: (1) values stay comfortably in the range 0-100, with 50 

corresponding to unit gain; (2) there is at least 20 dB of headroom; i.e., a parameter value of 100 

specifies a gain of +20 dB or more; (3) an input of 0 results in a gain of 0; (4) visible changes of level 

correspond to audible changes in loudness; and (5) for values around 50, a parameter change of one 

unit make well under one dB of change, so that f ine adjustments are possible using integer values. 

A decibel scale would be wildly inappropriate; even if we allow that 100 dB below the 

maximum gain is inaudible (probably not true if we have 20-ish dB of headroom as well), the middle 

of the scale will be nearly as quiet as the bottom and almost all the useful “throw” will lie within a 

tiny range of parameter values. A linear scale won't work either, since if 50 corresponds to unit gain 

100 will only reach +6 dB. The choice made here is a fourth-power curve, with 50 corresponding to 

unity. This gives a true 0 for an input of 0 and 16 for an input of 100, which is about 24 dB of 

headroom. In this scale, the difference between 50 to 51 is only about a 2/3 dB, so the control is 

probably fine-grained enough for most uses. (Non-integer values can be used if a finer grain is 

needed). 

If incoming MIDI “control change” messages are used as gain inputs, they can be normalized 

to the range 0-100, or else they may be left unmodified to allow the control to reach 127 (for a gain 

of +32 dB). 
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The output of amp4~ ramps over time, both to avoid signal discontinuities and to provide 

fade-ins and fade-outs. The design of a fade-in and fade-out shape is, again, chosen to be a good 

compromise for most use cases. Fades are roughly linear in sones (that is, roughly proportional to 

amplitude raised to the 0.6th power). The most audible consequence of a choice of a fade shape 

occurs when fading between zero and a non-zero value.  In this situation we posit that, halfway 

through the fade, it should be 1/2 as many sones as at the high end, that is, at relative gain of about 

0.315. For simplicity and efficiency we simply use a second-power power law that achieves 0.25 

instead (as if a sone were the 0.5th power of amplitude instead of the ISO standard 0.6th). 

 

1.4. Startup, initialization, and reset 

 

When the Null Piece patch is f irst opened, a “bang” message is sent to the global symbol “init”. 

This is used, for example, to set the input trim and overall output gain to 50 (for unity gain). Twenty 

milliseconds later (to give time for all “init” level settings to take effect), a bang is sent to the “reset” 

symbol. This is intended to set all automated parameters to their initial value. Parameters that are 

managed by genctl objects catch this reset message and are ramped to 0 by default. An optional 

argument to genctl can override this to reset to a different value. 

The reset bang message is also sent whenever the “stop” or “start” button (in version 1) is 

pressed. 

 

1.5. Parameter grabbing 

 

A parameter grabbing mechanism is provided so that you can save the values of any numerical 

parameters controlled by genctl objects, which can be put into message boxes and/or text or qlist 

objects. The mechanism has a user interface consisting of four buttons, the first of which is “do grab”. 

Each time you click that, all the genctl-controlled parameters that have changed since the last grab or 

patch reset are printed, both to the Pd window and to a text window in “qlist” format. By pressing 

“do grab” at various points while making parameter changes, you can get an incremental sequence of 

messages that will recreate the parameter changes without unnecessary repetitions. 

In case you really want it you can press “grab all” to get a complete snapshot of all parameter 
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values, even including ones that are at their reset value. You can also say “mark start” to direct the 

parameter-saving mechanism to report changes only from the current setting.  For example, if you are 

using the “1” patch and building a qlist, you can advance to any spot in the qlist and hit “mark start” 

to record incremental changes from there onward.  Finally, there is a button to clear the qlist text 

buffer and its event counter, in case you are ready to build a qlist from scratch. 

Certain parameters might be sometimes set explicitly in a message box or qlist, and at other 

times controlled by an automaton. In this situation, changes made by the automaton should not be 

saved into a qlist or message box, since the automaton will presumably be running again when the 

current state is restored. For this reason, the genctl abstraction catches a corresponding message to 

suppress grabbing when its parameter is being changed automatically. 

 

1.6. Sequencing 

 

The “1” version of the Null Piece has a sequencer based on Pd's qlist object. The sequencer 

considers the piece as having one “section”, although you can add other sections and either make 

them automatically start each other in turn or treat them as separate movements. Each section has a 

corresponding qlist f ile. The one section in the Null Piece itself is stored in the “score” subdirectory. 

The contents of the qlist are as shown: 

 

0 0 print section 1, event 1; 

0 1 print event 2; 

direct 50; 

0 2 print event 3 - end; 

500 direct 0; 

 

There are three events. The first one is played when the “start” button is pressed; it is intended to 

perform any setup actions such as reading audio samples into wavetables. After pressing “start”, you 

can activate the following events in order using the “next” button. Each event in the qlist should start 

with a line such as “0 1” for event 1. That line may also contain a f irst message (in this example, a 

helpful message to “print” which appears on the Pd window).  
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Lines starting with two numbers (zero and an event number) mark the beginning of the next 

event; the event numbers should be in numerical order. Other lines that begin with a single number 

specify delays before the message to be sent. These delays are cumulative, and by default are in 

milliseconds. (You can edit the patch to change the time units or even to set a time-varying tempo.) 

The messages themselves may start and stop sub-sequences in case a more flexible order of execution 

and/or multiple tempi are desired. 

 

2. Reality Check 

 

The first part of this paper considers a tool for quickly starting to develop a new piece of live 

electronic music. We now turn to a tool whose purpose is to address problems at the other end of the 

process: how to keep a piece of electronic music running once it's been made. 

Many pieces of new music, both electronic and purely acoustic, never get a second performance 

after their premiere. Only a lucky few of them are deemed worth continuing to perform over time.  

Pieces that use electronic supports are even less likely to receive repeat performances than acoustic 

ones, both because of the fragility of real-time electronic systems in general, and also because of the 

rapid evolution of the technologies on which they depend. 

A new tool called Reality Check, implemented in Pd, is intended to fill this need, at least for 

pieces that are realized in Pd and whose inputs and outputs are primarily audio. 

In at least one respect, the preservation problem is easier than it might sound. Although it is 

widely bemoaned that nothing in computer technology is stable, there is in fact a growing body of 

file formats, APIs, and programming languages that are verifiably stable. The affordances of the 

computer seem to be in a state of perpetual explosion with the emergence each year of new 

technologies. For any such technology (for instance, 3-D rendering), there is a period of 

experimentation. If the technology proves widely useful this is then followed by a period of 

standardization. Luckily for computer musicians, most of the technologies needed for live electronic 

music performance (with the notable exception of electronic instrument interfaces) are now 

effectively standardized. 

For it to be possible to preserve a piece exactly, the software that realizes the piece must be 

deterministic. Almost all of Pd is deterministic, but there are a few exceptions such as the realtime 
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and cputime objects, as well as any operation that reads a file that is not archived as part of the patch. 

Most of these situations are easy to avoid. (However, there could be other, unknown sources of 

indeterminism that could cause trouble at some unknown point in the future. If these exist, Reality 

Check could at least detect them.) 

 

2.1. Design of the patch 

 

Reality Check consists of a Pd patch that runs a music realization in a separate instance of Pd, 

in which inputs can be precisely controlled and outputs can be checked against a pre-computed 

reference output. Figure 3 shows a block diagram of the reality-check patch. 

 

FIGURE 3 – Reality check block diagram. 
 

 
 

Source: the author 
 

The reality-check patch is used in two phases: preparation and verification. To prepare a patch, 

you start the reality-check patch and feed it the pathname of the patch you wish to prepare. This will 

be run by the reality-check patch in a sub-instance of Pd using the pd~ object. You also feed the reality-

check patch the audio inputs you wish to present to the piece, along with a file containing time-

tagged messages that capture any user interface gestures and control inputs your piece should receive. 

(You might have to add receive objects to your patch to enable it to receive virtual inputs 
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corresponding to incoming MIDI messages or whatnot.) In the preparation phase, the reality check 

patch simply passes all this input to the sub-process and records the resulting audio output. The 

creator of the piece should be consulted to verify that the recorded output can indeed be considered 

correct. 

At any later time you can then run the reality-check patch again to verify that the patch still 

produces the same output as it did before.  In this mode the reality-check patch subtracts its reference 

output from the patch's new output, and if the two differ by more than a f ixed tolerance (one part in 

a million by default), the difference is reported and the test is considered as having failed. Otherwise 

the test has succeeded and you have verified that the patch works as it did before, at least when given 

those particular test inputs. 

Once the testing regime for a particular piece has been set up, you can run it whenever either 

(1) the patch for the piece is modified; (2) a new version of Pd appears; (3) a new version of some 

dependency such as an external library is updated; or (4) new computing hardware is introduced.  In 

some situations a software upgrade might occur, perhaps to a system library, without your even 

knowing how it could affect the output of your patch. For this reason it is advisable to run the test 

on a regular schedule in addition to any time a change is known to have occurred. 

It is wise always to have implementations of any piece on at least two computing platforms (for 

instance, MacOS and linux), both to get early warning if something operating-system-dependent has 

crept into the patch, and also so that, when a failure occurs, it is easy to trace the source of the 

unwanted change. 

 

2.2. What to do when Reality Check reports a failure 

 

When a failure is reported, that is, when the patch no longer produces the same output as it 

once did, it is necessary to track down the source of the change. In the easiest case this is done by going 

back to a working version and incrementally reintroducing whatever changes have been made until a 

culprit can be isolated. (If a working version is not available this will be much harder to do and might 

come down to guesswork.) If the problem arises because the patch itself has changed it is time to 

revert to the older version; presumably the patch has changed for some good reason but the changes 

should be reworked so that the test can pass again. 
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If the problem is that something in Pure Data has changed incompatibly this is a bug in Pd and 

should be reported quickly. Pd is also expected to hide changes in whatever operating system calls and 

other APIs it makes use of, and again Pd's own implementation would then need work. (One of the 

happy side effects of the Reality Check project is that it will act as a verification suite for Pd itself that 

can give early warning when a change to Pd has caused an incompatibility. Similarly, an update in 

Reality Check itself can cause problems; this is regarded as a compatibility failure in Reality Check 

that must be corrected). 

The situation regarding non-standard dynamic libraries loaded by a patch is more delicate. For 

any piece to be maintainable, all such “externs” must be provided with source code and with the 

necessary licensing to permit updating and recompilation. This is often neglected in the music 

production process, particularly when under time pressure or if making use of experimental 

techniques. Simply advising composers not to use experimental techniques is not a good answer 

because that is sometimes at the very heart of a musical project. A middle way must be negotiated in 

which the composer and whoever is doing the research agree on a plan to create a stable, maintainable 

implementation for use in the piece. More on these issues can be found in (Lindemann 2020). 

 

2.3. Managing evolution 

 

Often the creator of a piece will want to revise it. This is easily managed as long as the revised 

piece is then reincorporated into the reality-check framework, with a new patch and new reference 

output (and perhaps other changes as well). A more complicated situation arises when some aspect 

of the technology is improved. For example, analysis techniques such as pitch detection and score 

following are constantly being improved upon. For such improvements to be incorporated into an 

existing piece it is necessary for the creator to be invited back to verify that the new outputs still 

represent the piece correctly. If the creator is not available it might be desirable to maintain two 

distinct versions of the piece, one “period” implementation that reproduces the original audio 

outputs, plus an updated one that reflects whatever improvements seem worth introducing. This 

situation closely mirrors that of classical music where there can be trade-offs between authenticity 

and modernity in the choice of instruments. 
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2.4. Current status 

 

An implementation of Reality Check is available on the URL http://msp.ucsd.edu/tools/re-

ality, along with a small but growing collection of reality-checked pieces: a song from Philippe 

Manoury's en Echo, Kerry Hagan's of pulses and times, and, still in preparation, Rand Steiger's Eco-

sphere.  These were chosen to incorporate a wide range of different patching styles, and together they 

demonstrate that the Reality Check framework is able to accommodate them. (Also, Ecosphere lasts 

nearly 30 minutes and boasts a channel count of 14 channels in and 6 out, so it verifies the practicality 

of using Reality Check on large pieces). 

Although these pieces require some user interface actions on the part of the person running 

the patch, they do not exercise any input devices other than audio inputs and GUI actions resulting 

in Pd messages (such as to advance a patch through a piece). Inputs from MIDI, OSC, and various 

hardware devices can also be incorporated but only by recording all the inputs with time stamps and 

making a monster timed list of messages that Reality Check sends (exactly repeatably) to the patch.  

This will likely be an unwieldy process that will merit adding some new functionality. 

Musical output other than audio (such as MIDI messages) are not handled at all, and neither 

is video input or output. 

 

3. Conclusion 

 

The Null Piece is by no means a definitive or unique way to start in on a music production, 

and Reality Check is not at all the last word in electronic music preservation. They both make steps 

toward adapting Pd to the specific purpose of creating electronic music that is performed live.  In this 

sense they are directed at a more narrowly defined set of tasks than is Pd itself, but in exchange they 

offer a measure of labor saving over what Pd alone can offer. They nonetheless remain fairly abstract, 

in order to support the live performance of as wide a range of possible musical styles and approaches 

as can be managed, while at least mostly using audio computations, inputs, and outputs. 
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