Atividade anti-protozoário in vitro do p-Cimeno sobre Leishmania amazonensis

Autores

  • Jesieli Beraldo-Borrazzo Universidade Estadual de Maringá (UEM)
  • Adriana Oliveira dos Santos
  • Benício Alves de Abreu Filho
  • Lucindo José Quintans-Júnior
  • Celso Vataru Nakamura

DOI:

https://doi.org/10.33871/23594373.2019.21.02.3157

Resumo

As doenças tropicais se constituem em um grave problema de saúde pública, por serem negligenciadas e atingirem especialmente as populações mais pobres. Entre os principais problemas mundiais de saúde, a leishmaniose se destaca por apresentar altas taxas de mortalidade. Grandes esforços tem sido empregados na busca por novos medicamentos nas ultimas décadas, sendo o uso da fitoterapia investigado com grande interesse, devido às plantas serem consideradas uma ampla fonte de compostos com potencial biomedicinal. A atividade anti-protozoário da substância p-Cimeno sobre formas promastigotas e amastigotas axênicas de Leishmania amazonensis, foi avaliado. Após 72 horas de cultivo, o p-Cimeno apresentou concentração inibitória de 50% (CI50) igual à 65,0 µg/mL e 55,0 µg/mL sobre as formas promastigotas e amastigotas axênicas, respectivamente. Análises de citotoxicidade do p-Cimeno, foram realizadas por meio do método colorimétrico da sulforodamina-B sobre macrófagos J774G8 e a concentração citotóxica para 50% das células (CC50) foi de 54,0 µg/mL. Os dados obtidos indicam efeito antiparasitário do p-Cimeno sobre Leishmania amazonensis, principalmente sobre sua forma amastigota, sendo considerado potencial candidato para novos estudos contra o parasito.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jesieli Beraldo-Borrazzo, Universidade Estadual de Maringá (UEM)

Biotecnologia Microbiana
Departamento de Biotecnologia, Genética e Biologia Celular

Referências

Referências

ALVAR, J. et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE, v.7, n. 5, p. e35671, 2012.

ASHOK, P. et al. Synthesis and in-vitro anti-leishmanial activity of (4-arylpiperazin-1-yl)(1-(thiophen-2-yl)-9H-pyrido[3,4-b]indol-3-yl)methanone derivatives. Bioorganic Chemistry, v. 70, p.100-106, 2017.

BAKER, D. D. et al. The value of natural products to future pharmaceutical discovery. Natural Product Reports, v. 24, n. 6, p. 1225–1244, 2007.

BAKKALI, F. et al. Biological effects of essential oils – A review. Food and Chemical Toxicology, v. 46, p. 446–475, 2008.

BAPELA, M.J. et al. South African Journal of Botany Antileishmanial activity of selected South African plant species. South African Journal of Botany, v. 108, p. 342-345, 2017.

BENELLI, G. et al. Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Industrial Crops and Products, v. 132, p. 377-385, 2019.

BEZERRA, J.M.T. et al. Burden of leishmaniasis in Brazil and federated units, 1990-2016: Findings from Global Burden of Disease Study 2016. PLoS Neglected Tropical Diseases, v.12, n. 9, p. e0006697, 2018.

CAO, R. et al. β-carboline alkaloids: biochemical and pharmacological functions. Current Medicinal Chemistry, v. 14, p. 479-500, 2007.

CAVALLI, J.F. et al. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: Quantitative determination of ascaridole, a heat-sensitive compound. Phytochemical Analysis, v. 15, p. 275–279, 2004.

COGO, J. et al. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agentes. European Journal of Medicinal Chemistry, v. 90, p. 07-123, 2015.

CROFT, S.L. et al. Current scenario of drug development for leishmaniasis. Indian Journal of Medicinal Research, v.123, n. 3, p. 99–410, 2006.

DESJEUX, P. Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases, v. 27, n. 5, p. 305–318, 2004.

DUJARDIN, J.C. et al. Collaborative actions in antitrypanosomatid chemotherapy with partners from disease endemic areas. Trends in Parasitology, v. 26, p. 395–403, 2010.

FOE, F.M.C. et al. Chemical composition, antioxidant effects and antimicrobial activities of some spices"™ essential oils on food pathogenic bacteria. African Journal of Biotechnology, v. 15, p. 649–656, 2016.

GOTO, H.; LINDOSO, J.A.L. Cutaneous and mucocutaneous leishmaniasis. Infectious Disease Clinics of North America Journal, v.26, p. 293-307, 2012.

GUIMARíES, A.G. et al. Monoterpenes with analgesic activity--a systematic review. Phytotherapy Research: PTR, v. 27, n. 1, p. 1–15, 2012.

HARTMANN, T. From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry, v. 68, p. 2831–2846, 2007.

HUSSAIN, H. et al. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chemical Reviews, v. 114, p. 10369-10428, 2014.

KUMAR, Y. et al. AromaDb: A database of medicinal and aromatic plant's aroma molecules with phytochemistry and therapeutic potentials. Frontiers in Plant Science, v. 9, p. 1–11, 2018.

LIMA, E.J.S.P. et al. Antitumor Effect of the Essential Oil from the Leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules, v. 23, n.11, p. 2974, 2018.

MACHADO, M. et al. Activity of Thymus capitellatus volatile extract, 1,8-cineole and borneol against Leishmania species. Veterinary Parasitology, v. 200, n. 1, p. 39–49, 2014.

MANS, D. R. A. et al. In vitro evaluation of traditionally used Surinamese medicinal plants for their potential anti-leishmanial efficacy. Journal of Ethnopharmacology, v. 180, p. 70-77, 2016.

MARCHESE, A. et al. Update on monoterpenes as antimicrobial agents: a particular focus on p-cymene. Materials, v. 10, n. 8, p. 947, 2017.

MCCONVILLE, M.J.; HANDMAN, E. The molecular basis of Leishmania pathogenesis. International Journal for Parasitology, v.37, p.1047–1051, 2007.

MECHERGUI, K. et al. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Industrial Crops and Products, v. 90, p. 32–37, 2016.

MENEZES, J.P.B. et al. Advances in Development of New Treatment for Leishmaniasis. BioMed Research International, p. 1-11, 2015.

MONZOTE, L. et al. Chemistry and leishmanicidal activity of the essential oil from Artemisia absinthium from Cuba. Natural Products Communications, v.9, n. 12, p. 1799–1804, 2014.

NATERA, S. et al. Leishmania spp.: proficiency of drug-resistant parasites. International Journal of Antimicrobial Agents, v. 29, n. 6, p. 637-642, 2007.

OLIVEIRA, T. M. et al. Evaluation of p-cymene, a natural antioxidant. Pharmaceutical Biology, v. 53, n. 3, p. 423–428, 2015.

PHILIS, J.G. The S1 ↠S0 spectrum of jet-cooled p-cymene. Spectrochimica Acta: Molecular and Biomolecular Spectroscopy, v. 61, n. 6, p. 1239–1241, 2005.

QUINTANS, J.S.S. et al. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, v. 20, p. 436–440, 2013.

RATES, S.M.K . Plants as source of drugs. Toxicon, v. 39, n. 5, p. 603–613, 2001.

REITHINGER, R. et al. Cutaneous leishmaniasis. The Lancet Infectious Diseases, v. 7, n. 9, p.581–596, 2007.

SANTOS, W.B.R. et al. p-Cymene attenuates cancer pain via inhibitory pathways and modulation of calcium currents. Phytomedicine, v. 61, p. 152836, 2019.

SERENO, D. et al. Advances and perspectives in Leishmania cell based drug-screening procedures. Parasitology International, v. 56, n. 1, p. 3–7, 2007.

SILVA, V.D. et al. Chemical composition of Ocimum canum Sims. essential oil and the antimicrobial, antiprotozoal and ultrastructural alterations it induces in Leishmania amazonensis promastigotes. Industrial Crops and Products, v. 119, p. 201–208, 2018.

SKEHAN, P. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal National Cancer Institute, v.82, n.13, p. 1107-12. 1990.

TIAN, F. et al. p-Cymene and its derivatives exhibit antiaflatoxigenic activities against Aspergillus flavus through multiple modes of action. Applied Biological Chemistry, v. 61, p. 489-497, 2018.

WHO, World Health Organization. Leishmaniasis: Epidemiological Report of the Americas, 2019. Disponí­vel em:< https://www.who.int/leishmaniasis/resources/who_paho_era7/en/> Acesso em: 10 Ago.2019.

Downloads

Publicado

27-03-2020