Bioprospecting endophytic Diaporthe species associated with Pachystachys lutea (Acanthaceae) with antagonistic effect against Sclerotinia sclerotiorum

Ana Paula Ferreira, Natieli Jenifer Mateus, João Arthur dos Santos de Oliveira, João Alencar Pamphile, João Lucio Azevedo


Endophytic microorganisms live inside the plant tissues symptomless. These microorganisma may present antagonistic activity against phytopathogens or produce metabolites with antifungal activity. We aimed to evaluate in vitro antagonism and competitive interactions between endophytic fungi of Diaporthe species and Sclerotinia sclerotiorum.  We also carried out in vitro screening of antifungal activity of metabolic extracts of the two endophytes against the pathogen. The antagonism was performed by the paired-culture and two promising antagonists strains were selected for metabolic extraction from the fermented culture. Metabolic extracts were obtainment using two different organic solvents (Ethyl Acetate and Hexane) and their antifungal activity was carried out using the agar diffusion test. The in vitro antagonistic index ranged from 22.1 to 59.5%, with Diaporthe sp. PL03 (59.1%), D. schini PL40 (59.5%), D. infecunda PL63 (41.8%), D. anacardii PL64 (56.8%), with inhibition by mycelial contact. The endophytes PL01 (28.6%) and PL43 (28.5%), both D. anacardii, stood out blocking mycelial growth from a distance. In the antifungal assay, D. anacardii PL01 (31.7%) and D. schini PL40 (18.2%) acetate metabolite stood out. In summary, our results indicate a few Diaporthe endophytes able to antagonize a S. sclerotiorum pathogen under in vitro conditions.

Texto completo:



ABÁN, C. L.; TABOADA, G.; SPEDALETTI, Y.; APARICIO, M.; CURTI, R. N.; CASALDERREY, N. B.; MAGGIO, M. E.; CHOCOBAR, M. O.; SALGADO, M.; GALVÁN, M. Z. Molecular, morphological and pathogenic diversity of Sclerotinia sclerotiorum isolates from common bean (Phaseolus vulgaris) fields in Argentina. Plant Pathology, v. 67, p. 1740-1748, 2018. DOI: 10.1111/ppa.12880

BADALYAN, S. M.; INNOCENTI, G.; GARIBYAN, N. G. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathologia Mediterranea, v. 41, p. 200-225, 2002. DOI: 10.14601/Phytopathol_Mediterr-1668

BERNARDI-WENZEL, J.; GARCIA, A.; FILHO, C. J.; PRIOLI, A. J.; PAMPHILE, J. A. Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biological Research, v. 43, n. 4, p. 375-384, 2010. DOI: 10.4067/S0716-97602010000400001

BONGIORNO, V. A.; RHODEN, S. A.; GARCIA, A.; POLONIO, J. C.; AZEVEDO, J.L.; PEREIRA, J. O.; PAMPHILE, J. A.Genetic diversity of endophytic fungi from Coffea arabica cv. Iapar-59 in organic crops. Annals of Microbiology, v. 66, p. 855-865, 2016. DOI: 10.1007/s13213-015-1168-0

CAMPANILE, G.; RUSCELLI, A.; LUISI, N. Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in plant tests. European Journal of Plant Pathology, v. 117, n. 3, p. 237-246, 2007. DOI: 10.1007/s10658-006-9089-1

CHOWDHARY, K.; KAUSHIK, N. Fungal endophyte diversity and bioactivity in the indian medicinal plant Ocimum sanctum Linn. Plos One, v. 10, n. 11, p. 01-25, 2015. DOI: 10.1371/journal.pone.0141444

FELBER, A. C.; ORLANDELLI, R. C.; RHODEN, S. A.; GARCIA, A.; COSTA, A. T.; AZEVEDO, J. L.; PAMPHILE, J. A. Bioprospecting foliar endophytic fungi of Vitis labrusca Linnaeus, Bordô and Concord cv. Annals of Microbiology, v. 66, p. 765–775, 2016. DOI: 10.1007/s13213-015-1162-6

FERREIRA, D. F. Sisvar: a computer analysis system. Ciência e Agrotecnologia, v. 35, p. 1039-1042, 2011. DOI: 10.1590/S1413-70542011000600001

GHORBANPOUR, M.; OMIDVANI, M.; DAHAJI-ABBASZADEH, P.; OMIDAVAR, R.; KARIMAN, K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, v. 17, p.. 147-157, 2017. DOI: 10.1016/j.biocontrol.2017.11.006

GOMES, R. R.; GLIENKE, C.; VIDEIRA, S. I. R.; LOMBARD, L.; GROENEWALD, J. Z.; CROUS, P. W. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia- Molecular Phylogeny and Evolution of Fungi, v. 31, p. 01-41, 2013. DOI: 10.3767/003158513X666844

GOSSEN, B. D.; RIMMER, S. R. First report of resistance to Benomyl fungicide in Sclerotinia sclerotiorum. Plant Desease, v. 85, n. 11, 2007. DOI: 10.1094/PDIS.2001.85.11.1206C

KUMAR, S.; KAUSHIK, N. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. Plos one, v. 8, n. 2, e56202, 2013. DOI: 10.1371/journal.pone.0056202.

KUSARI, S.; HERTWECK, C.; SPITELLER, M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, v. 19, n. 7, p. 792–798, 2012. DOI: 10.1016/j.chembiol.2012.06.004

KUSARI, S.; SINGH, S.; JAYABASKARAN, C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends in Biotechnology, v. 32, n. 6, p. 297–303, 2014. DOI: 10.1016/j.tibtech.2014.03.009

MEDEIROS, A. G.; SAVI, D. C.; MITRA, P.; SHAABAN, K. A.; JHA, A. K.; THORSON, J. S.; ROHR, J.; GLIENKE, C. Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiologica, v. 63, n. 4, p. 499-505, 2018. DOI: 10.1007/s12223-018-0587-2

OLIVEIRA, C. F.; MOURA, P. F.; RECH, K. S.; OLIVEIRA, C. S. P.; HIROTA, B. C. K.; OLIVEIRA, M.; SILVA, C. B.; SOUZA, A. M.; DIAS, J. F. G.; MIGUEL, O. G.; AUER, C. G.; MIGUEL, M. D. Antagonistic activity of Diplodia pinea against phytopathogenic fungi. Folia Microbiologica, v. 64, n. 3, p. 415-419, 2018. DOI: 10.1007/s12223-018-00667-y

PARK, M. S.; EOM, J. E.; FONG, J. J.; LIM, Y. W. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. Journal of Microbiology, v. 53, n. 4, p. 219-225, 2015. DOI: 10.1007/s12275-015-4700-9

POLONIO, J. C.; ALMEIDA, T. T.; GARCIA, A.; MARIUCCI, G. E. G.; AZEVEDO, J. L.; RHODEN, A. S.; PAMPHILE, J. A. Biotechnological prospecting of foliar endophytic fungi of guaco (Mikania glomerata Spreng.) with antibacterial and antagonistic activity against phytopathogens. Genetics and Molecular Research, v. 14, n. 3, p. 7297-7309, 2015. DOI: 10.4238/2015.July.3.5

PRETO, G.; MARTINS, F.; PEREIRA, J. A.; BAPTISTA, P. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and section of isolates to be used as biocontrol agents. Biological Control, v. 110, p. 01-09, 2017. DOI: 10.1016/j.biocontrol.2017.03.011

RATNAWEERA, P. B.; DILIP, E. S. Endophytic fungi: a remarkable source of biologically active secondary metabolites. In: MAHESHWARI, D. K.; ANNAPURNA, K. Endophytes: Crop Productivity and Protection, v. 02, p. 191- 212, 2017. DOI: 10.1007/978-3-319-66544-3_9

RIBEIRO, A.S.; POLONIO, J. C.; COSTA, A. T.; DOS SANTOS, C. M.; RHODEN, S. A.; AZEVEDO, J. L.; PAMPHILE, J. A. Bioprospection of culturable endophytic fungi associated with the ornamental plant Pachystachys lutea. Current Microbiology, v. 75, n. 5, p. 588-596, 2018. 10.1007/s00284-017-1421-9.

SINGH, S. K.; STROBEL, G. A.; KNIGHTON, B.; GEARY, B.; SEARS, J.; EZRA, D. An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microbial Ecology, v. 61, p. 729-739, 2011. DOI: 10.1007/s00248-011-9818-7

SPECIAN, V.; SARRAGIOTTO, M. H.; PAMPHILE, J. A.; CLEMENTE, E. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricate. Brazilian Journal of Microbiology, v, 43, n. 3, 2012. DOI: 10.1590/S1517-83822012000300045

TALAAT, N. B. Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regukating photosynthetic rate and endogenous phytohormones production. Scientia Horticulturae, v. 250, p. 254-265, 2019. DOI: 10.1016/j.scienta.2019.02.052

TANAPICHATSAKUL, C.; MONGGOOT, S.; GENTEKAKI, E.; PRIPDEEVECH, P. Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Current Microbiology, v. 75, n. 4, p. 476-483, 2018. DOI: 10.1007/s00284-017-1405-9

TERHONEN, E.; KOVALCHUK, A.; ZARSAV, A.; ASIEGBU, F. O. Biocontrol potential of forest tree endophytes. In: PIRTTILÄ; A. M.; FRANK, A. C. (Eds.). Endophytes of Forest Trees Biology and Applications, v. 86, 2.Ed., p. 283-318, 2018. DOI: 1007/978-3-319-89833-9_13

WONG, C.; TAN, L. T.; MUJAHID, A.; LIHAN, S.; WEE, J. L. S.; TING, L. F.; MÜLLER, M. Biosorption of copper by endophytic fungi isolated from Nepenthes ampullaria. Letters in Applied Microbiology, v. 67, n. 4, p. 384-391, 2018. DOI: 10.1111/lam.13049

YING, G-G. Ecological risk assessment of pesticides used in agriculture. In: MAESTRONI, B.; CANNAVAN, A. (Eds.) Integrated Analytical Approaches for Pesticide Management, Academic Press, p. 67-79, 2018. DOI: 10.1016/B978-0-12-816155-5.00005-1

ZHANG, Q.; JING, Z.; LONG, Y.; LEI, Z.; DAOHONG, J.; WEIDONG, C.; GUOQING, L. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, v. 72, p. 98–108, 2014. DOI: 10.1016/j.biocontrol.2014.02.018


  • Não há apontamentos.